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The main objectives of the study were (i) to quantitatively
describe the nonlinear viscoelastic creep of model nano-
composites, (ii) to construct the generalized compliance
curve by means of the tensile compliance vs. internal
time superposition for a pseudo iso-free-volume state,
and (iii) to predict the compliance vs. real time curves for
selected stresses. To this end, the free volume theory of
nonlinear viscoelastic creep developed for thermoplas-
tics and their blend was successfully employed. Linear
low density polyethylene/fumed silica nanocomposites,
showing notable enhancement of the creep resistance in
proportion to the surface area of incorporated nanofillers,
were taken as simple model materials. POLYM. COMPOS.,
31:1947–1955, 2010. ª 2010 Society of Plastics Engineers

INTRODUCTION

In the recent years, rising interest has emerged in the use

of inorganic nanofillers, such as silica, titania, alumina, and

zirconia, to increase the rigidity, dimensional stability, and

toughness of various polymeric matrices [1]. Thermoplastic

materials find many applications where they are expected

to sustain long lasting constant loads without excessive

deformations. Thus, in many cases, poor creep resistance

represents a serious deficiency [2, 3] of thermoplastics. It

has been demonstrated that their reinforcement with rela-

tively small amounts of nanofillers can be an effective solu-

tion leading to the enhancement of the creep resistance [4].

For example, titania nanoparticles markedly reduce the

creep compliance of nylon 66 [5–7], while alumina nano-

particles effectively reduce the compliance of polystyrene

[8]. The creep compliance of high-density polyethylene

(HDPE) blown films can be significantly reduced [9] by the

incorporation of maleated polyethylene and Cloisite 15A

clay. A marked reduction of the creep compliance of HDPE

can also be achieved by using submicrometer titania par-

ticles [10, 11] or organoclays [12]. Analogous results were

reported for the viscoelastic properties of the polyimide/

silica nanocomposites [13]. It is generally believed that

nanoparticles can effectively restrict the mobility of poly-

mer chains and influence the stress transfer at the nano-

scale, which have positive effects on the creep resistance

(dimensional stability) of the material.

Although a number of methods have been elaborated

for the evaluation of the stress transfer at the fiber/matrix

interfaces in microcomposites [14], no reliable method is

currently available for nanocomposites. Among nanofillers

that can be introduced into polymer matrices, the poly-

mer/clay systems have mostly been studied, while less

attention has been paid to the nanocomposites with fumed

silica. This kind of nanoparticles is prepared by flame hy-

drolysis technique [15], in which a vapor precursor (such

as silicon tetrachloride) is burned in hydrogen/oxygen

mixture to produce the metal oxide. A series of linear low

density polyethylene/fumed silica nanocomposites recently

prepared by simple melt compounding has shown interest-

ing enhancements of the stiffness, yield stress, and strain

at break [16].

Quantitative analysis of the nonlinear creep, its extrap-

olation and/or prediction rank among very interesting

fields of the materials research [17, 18]. Experimental

creep data can often be fitted by a suitable equation,

which facilitates their storage and processing. However,

proposed equations are mainly empirical and their validity

may be limited to particular materials and/or test condi-

tions. Theoretical background of the idealized creep

behavior has been well elaborated in the field of the linear

viscoelasticity [19–26]. Such behavior is expected for
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homogeneous and rheologically simple materials at infini-

tesimal deformations. However, polymeric materials used

in practice are usually heterogeneous and rheologically

complex and produced deformations are far from being

infinitesimal [2]. For relatively high deformations, isother-

mal compliance (or modulus) becomes a function of both

time and stress (or strain). For this reason, nonlinear

viscoelastic behavior dominates over a major portion of

the entire response interval of most polymeric materials

and plays the key role in most applications. As the quanti-

tative data analysis in the nonlinear creep region is much

more difficult than in the linear region, a deeper under-

standing of the underlying processes controlling the me-

chanical response is required [2, 22, 23, 26–31].

Recently, the concept of a ‘‘material clock’’ has been

introduced to describe how the retardation (or relaxation)

times are controlled by the current state of the material in

the course of a solicitation. According to this approach, the

internal time of a material differs from the experimental

(laboratory) time. Subsequently, a shift factor is introduced

to convert the experimental time into the internal time in

a hypothetical reference state of the material. The proposed

quantities controlling a material clock are free volume

[3, 28–30, 32–34], strain [30], or stress [35]. The most suita-

ble parameter seems to be the free volume because the phe-

nomenological theory of viscoelasticity [19–26] has shown

that retardation (or relaxation) times are controlled by the

fractional free volume available for molecular motions in

polymeric materials. As the strain-induced increase in the

specific volume can be identified with the increase in the

fractional free volume [36–38], the molecular mobility in

polymers is necessarily affected by tensile strains. The for-

mulae for the shift factors have been derived, which allow us

to construct a generalized creep curve over a long time inter-

val by using the time-tensile strain superposition. The free

volume approach to the nonlinear tensile creep has success-

fully been applied to polypropylene (PP) [18, 39], PP/sty-

rene-acrylonitrile copolymer (SAN) [3] and PP/cycloolefin

copolymer (COC) [40], and PE/COC blends [41].

This article is concerned with the nonlinear tensile creep

of the LLDPE/fumed silica nanocomposites prepared via

melt compounding. Our objectives are (i) to evaluate the

effects of the filler and of its surface area on the nonlinear

tensile creep behavior, (ii) to quantitatively describe the

nonlinear creep by introducing a set of material parameters,

(iii) to employ the creep data for various stresses to con-

struct the generalized compliance curves by means of the

internal time–tensile strain superposition for a pseudo iso-

free-volume state, (iv) to predict the compliance–real time

curves for any selected stress (lower than the yield stress).

THEORETICAL BACKGROUND

As far as the strain-induced volume increment of a

polymer matrix can be identified with the increment in

the free volume [36–38], increasing strain in the tensile

creep produces an increase in molecular mobility and a

perceptible shortening of retardation times. However, the

quantitative application of this concept can be quite com-

plex, because ‘‘auxiliary’’ parameters related to the poly-

mer physical properties need to be introduced.

Empirical Function for Fitting the Creep of Polyethylene

The strain in tensile creep, e(t, r, T), depending on time

t, stress r, and temperature T, is composed of three parts

[21–26, 42]: (i) elastic (instantaneous, reversible) ee(r, T);
(ii) viscoelastic (time-dependent, reversible) ev(t, r, T); (iii)
plastic (irreversible) ep(t, r, T):

e t; r; Tð Þ ¼ ee r; Tð Þ þ ev t; r; Tð Þ þ ep t; r; Tð Þ ð1Þ
If no plastic deformation is produced in the course of

creeping, the tensile compliance D(t, r) ¼ e(t, r)/r for the

isothermal nonlinear creep can be expressed as follows:

D t; rð Þ ¼ De rð Þ þ Dv t; rð Þ ð2Þ
In some cases, the creep compliance was tentatively

expressed as a product of independent functions of time,

stress, and temperature, i.e. D(t, r, T) ¼ g1(t)�g2(r)�g3(T)
[23, 43]. However, experimental results often indicate

interrelations between these presumably independent func-

tions. Various empirical equations were proposed to fit

D(t, r) or Dv(t, r) [18, 42–44]. A relatively simple equa-

tion was found suitable for describing isothermal creep of

polypropylene and of its blends [3, 18, 40, 45]:

logD t; rð Þ ¼ logW rð Þ þ n log
t

srm

8>: 9>; ð3Þ

where W(r) is a function of stress, srm is the mean retar-

dation time and 0 � n � 1 is the shape parameter reflect-

ing the distribution of retardation times.

Tensile Creep as a Non-iso-free Volume Process

The free volume concept was widely utilized to pro-

vide satisfactory explanation for the effects of tempera-

ture, hydrostatic pressure, tensile deformation, chain ends,

diluents (plasticizers), the state of physical aging, etc. on

the viscoelastic behavior of polymers. The fractional free

volume [19, 20, 23–26] can be defined as:

f ¼ V � Vhð Þ
V

¼ Vf

V
ð4Þ

where V is the specific volume, Vh is the specific volume

occupied by molecules [25], and Vf is the free volume.

The free volume is presumed [19, 38] to consist of vacan-

cies of about the same size as mobile molecular segments.

The glassy state of polymers is generally viewed [19, 20,

23–26] as an iso-free-volume state with fg ¼ 0.025. If

solely the effects of temperature T and of time-dependent

tensile strain e(t) are considered, the fractional free vol-

ume can be expressed as:
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f T; e tð Þ½ � ¼ fg þ afv T � Tg
� �þ 1 2 2mð Þe tð Þ

¼ fg þ DfT þ Dfe ð5Þ
where afv is the expansion coefficient of the free volume at

T[Tg (which can be approximated as the difference between

the expansion coefficients of the material above and below Tg,
i.e., afv ¼ al 2 ag), m is Poisson’s ratio, and [(1 – 2m) e(t)] is
the strain-induced dilatation for an isotropic material. The

fractional free volume f is assumed to control retardation times

sr in conformity with the following equation [19, 24, 46]:

ln sr ¼ lnXþ B

f
ð6Þ

where O is the frequency of the thermal motion inside a

potential well and B is a numerical factor related to the ratio

of the volume of a jumping segment to the volume of the crit-

ical vacancy necessary for the implementation of a segment

jump. The effect of f on sr is routinely expressed by means of

the shift factor (log a) along the time scale [18, 24, 28]:

log a ¼ log sr f2ð Þ � log sr f1ð Þ ð7Þ

where f2[ f1. The time-strain shift factor, log ae(t), defined
as the ratio of the mean retardation time srm[e(t), Tc] at a
strain e(t) and srmi[ei ¼ 0, Tc] for initial time ti ¼ 0 (at a

constant temperature Tc) can be obtained [18] by combining

Eqs. 5 and 7:

log ae tð Þ ¼ � B

2:303

8>: 9>; 1� 2mð ÞMe tð Þ= fg þ DfTc

� �� �
1� 2mð ÞMe tð Þ þ fg þ DfTc

� �� � ð8Þ

where M is the ratio of the average strain of the creeping

phase (or component) in the multiphase test specimen and

of the measured strain. Under these conditions, log ae(t) is
not a constant for an isostress creep curve, but grows with

the creep strain due to increasing free volume in the creep-

ing specimen. If srm of Eq. 3 obeys Eq. 7, then isothermal

D(t, r) can be expressed as:

logD t; rð Þ ¼ logW rð Þ � n log srmi � n log ae tð Þ½ � þ n log tð Þ
¼ logC t; rð Þ þ n log tð Þ ð9Þ

To separate the effects of stress and time, Eq. 9 can be

rewritten in the following form:

logD t; rð Þ ¼ logW rð Þ � n log srmi½ � þ n log tð Þ � log ae tð Þ½ �
¼ logC� rð Þ þ n� log t�ð Þ ð10Þ

where parameters C* and n* are related to internal time

t* which reads:

log t� ¼ log tþ log aeðtÞ ¼ log t

þ B

2:303

8>: 9>; 1� 2mð ÞMe tð Þ= fg þ DfTc

� �� �
1� 2mð ÞMe tð Þ þ fg þ DfTc

� �� � ð11Þ

The log D(t) vs. log t plot would coincide with the log

D(t*) vs. log t* plot for extremely low stresses and

strains, for which Dfe ? 0; thus C* and n* are the limit-

ing values of C and n for the creep in a (hypothetical)

pseudo iso-free volume state.

Strain Magnification Factor for the Amorphous Phase in
Crystalline Polymers

As the crystalline phase has distinctly lower compli-

ance than the amorphous phase at T[ Tg, the viscoelastic

creep processes in semicrystalline polymers at T [ Tg
take mainly place in the amorphous phase. To this end,

semicrystalline polymer structure can be visualized in a

simplified manner by a two-parameter equivalent box

model (EBM) (Fig. 1), which was successfully used in

the predictive formats for the moduli, yield strength, per-

meability, etc. [47–50] of two-component heterogeneous

materials. To account for differing strains of amorphous

(subscript 1) and crystalline (subscript 2) phases in the

EBM, the strain-magnifying factor M can be introduced

corresponding to the ratio of the average strain of the

creeping phase (or component) in the multiphase test

specimen and of measured strain. If a crystalline polymer

is deformed, the strains of the amorphous and crystalline

fractions coupled in parallel, i.e., v1p and v2p, are identical

with the measured strain. As the crystalline phase has the

compliance by two to three orders of magnitude lower

than the amorphous phase above its Tg, the crystalline

fraction v2s (Fig. 1) coupled in series will not be percepti-

bly deformed during the creep process. As the displace-

ment in the fraction v1s is equal to the macroscopic dis-

placement, the resulting strain of the amorphous phase

coupled in series is higher than the measured strain; con-

FIG. 1. Equivalent Box Model (EBM) for a two-component system

(schematically).
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sequently, the generation of the strain-induced free vol-

ume in the fraction v1s will be higher than in the fraction

v1p. It was shown that the mean value of M for the amor-

phous phase is [3, 18, 40]:

M ¼ 1þ v2s
v1

8>: 9>; ð12Þ

Utilizing a universal formula proposed by the percola-

tion theory [51–53] for heterogeneous binary systems, the

following equations have been derived [47–50] to deter-

mine the volume fractions of the EBM:

v1p ¼ v1 � v1cr
1� v1cr

� �q
ð13aÞ

v2p ¼ v2 � v2cr
1� v2cr

� �q
ð13bÞ

where v1cr or v2cr is the critical volume fraction (the per-

colation threshold) at which the phase (or component) 1

or 2 becomes partially continuous and q is the critical

exponent. For three-dimensional cubic lattice, the percola-

tion threshold vcr ¼ 0.156 was calculated [52, 53].

Remaining volume fractions v1s and v2s are evaluated by

using Eq. 14.

v1s ¼ v1 � v1p ð14aÞ
v2s ¼ v2 � v2p ð14bÞ

Values of q were mostly reported [47, 48, 52, 53] in

an interval of 1.6–2.0 so that q ¼ 1.8 may be used as a

typical value.

EXPERIMENTAL PART

Materials and Preparation of the Samples

Linear low density polyethylene Flexirene1 CL10 was

kindly supplied by Polimeri Europa (Mantova, Italy): melt

flow index (MFI) at 1908C, 2.16 kg equal to 2.6 g/100,
mean numeric molecular weight of 27,000, density equal

to 0.918 g/cm3, melting point of 1218C. Flexirene1 CL10

is a butene copolymer linear low density polyethylene

(C4-LLDPE) suitable for the extrusion of thin films. Two

different kinds of Aerosil1 fumed silica were kindly sup-

plied by Degussa (Hanau, Germany). These nanofillers

differ in the surface area, i.e. 200 m2/g for Aerosil 200,

380 m2/g for Aerosil 380. LLDPE chips and fumed silicas

were utilized as received.

A melt compounding process followed by hot pressing

was adopted for sample preparation. Thermo Haake1 in-

ternal mixer was used for the compounding at 1708C for

15 min and 90 rpm. The obtained composites were then

hot pressed in a Carver1 press at 1708C for 15 min at

low pressure (0.2 kPa), to produce 20 cm 3 20 cm sheets

about 0.8 mm thick. In this way the LLDPE/fumed silica

nanocomposites were prepared with a constant volume

loading of 2% (samples LLDPE-A200-2 and LLDPE-

A380-2).

Morphological Analysis

To visualize the dispersion degree and the dimensions

of fumed silica aggregates, Transmission Electron Micros-

copy (TEM) technique was utilized. LLDPE/A380-2 sam-

ple was observed through a Philips1/FEI CM120 trans-

mission electron microscope, at an acceleration voltage of

80 kV. A thin section of this sample was ultramicrotomed

at a temperature of about 2708C by using a Reichert-

Jung1 Ultracut FC4E cryo-ultramicrotome.

Tensile Creep Measurements

Creep tests of LLDPE and nanocomposites were per-

formed at 308C by using an Instron1 4502 tensile testing

machine. Rectangular test specimens 100 mm long, 5 mm

wide, and 0.8 mm thick were adopted, setting a gage

length of 60 mm. As the yield strength (ry) of neat

LLDPE was about 10 MPa, several stress levels, ranging

from 1 to 5 MPa, were applied in creep experiments. The

total time of the creep tests was 1200 s. Isochronous

stress-strain curves were then constructed considering the

strain of the specimens at different creep stresses at

selected times between 200 and 1000 s.

RESULTS AND DISCUSSIONS

In Figure 2 TEM images of the LLDPE-A380-2 nano-

composite sample at different magnification levels are

reported. It is easy to detect the presence of spherical silica

aggregates uniformly dispersed in the matrix, with mean di-

ameter of about 200 nm. This means that the relatively high

shear forces applied during the melt compounding process

led to a satisfactory dispersion of the nanofiller.

The effect of the fumed silica nanofiller on the isother-

mal tensile creep at different stresses is visualized in Fig. 3.

As expected, the creep compliance of LLDPE is perceptibly

higher than that of the composites, if D(t) values obtained
under identical loads are compared. In Figure 4 isochronous

curves are reported, which were obtained by plotting the

creep strain against the applied stress for LLDPE, LLDPE-

A200-2, and LLDPE-A380-2 at selected creep times. It can

be concluded that incorporated nanosilica increases creep

stability, especially when the high surface area nanofiller

(A380) is used. As an example, the profound decrease in

the creep compliance due to the presence of nanoparticles

is evidenced by the fact that isochronous curve of LLDPE-

A380-2 sample at 1000 s is very similar to that of neat

LLDPE at 200 s. Moreover Fig. 4 indicates that the appa-

rent stress-strain linearity limit does not exceed 1% of

strain.

The superposition of the nonlinear creep data necessi-

tates the application of the outlined approach based on

the fractional free volume rising with the creep strain. For
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this end, the inputs B, m, M, fg, and afv occurring in Eqs.
5–11 are required. As no reliable data for LLDPE can be

found in existing literature, the aforementioned parameters

can only be roughly estimated. As shown in previous

articles [39], the ensemble of the parameters making the

internal time–strain superposition possible can be varied

in some limits. However, it is not possible to arbitrarily

anchor the generalized curve on the time scale by manip-

ulating with the inputs, because the superposition is suc-

cessful only in a ‘‘reference state,’’ i.e. in a certain inter-

val on the t* scale.

The value of B is believed, with regard to its definition,

to be a constant close to 1. The determination of Poisson’s

ratio of thermoplastics and of its possible dependence on

strain and/or time is extremely complex and only sporadic

data can be found in literature. Usually only a constant

value of m is tabulated to characterize a polymer [22, 23,

42]. As for Poisson’s ratio of polyethylene, different exper-

imental values ranging from 0.4 to 0.5 can be found in lit-

erature [54–59]. Thus m ¼ 0.44 reported in articles [57, 59]

was chosen for studied LLDPE. The value of M ¼ 1.51

was calculated for v1cr ¼ v2cr ¼ 0.156 and q ¼ 1.8, by

using Eq. 12. The fractional free volume in the glassy state

and its expansion coefficient are generally taken as univer-

sal constants, i.e. fg ¼ 0.025 and afv ¼ 0.00048 K21.

Adopting these values along with Tg ¼ 21108C [60] for

LLDPE, we did not succeed in superposing the creep data.

The superposition became viable for fg ¼ 0.0125 and afv
¼ 0.0002 K21, which approximately correspond to one

half of the universal values. These discrepancies might be

attributed to relatively high crystallinity and to the fact that

amorphous (noncrystalline) parts are mainly formed loops

at the surface of lamellae.

Figure 5 shows that if the creep compliance is plotted

against the internal time t* (calculated by using the indi-

cated inputs), the superposition of the creep curves is

quite satisfactory for the neat LLDPE and as well as for

the nanocomposites. Generalized curves for the iso-free-

volume state given in Fig. 6 indicate that (i) the creep

compliance of LLDPE is distinctly higher than that of

nanocomposites and (ii) the creep stability of the materi-

als increases with the specific surface area of the nanopar-

ticles. The parameters of Eq. 10 used for fitting experi-

mental dependencies of neat LLDPE and its nanocompo-

sites are summarized in Table 1. It is evident that this

equation is fully satisfactory to fit experimental data of all

the tested samples. Table 1 evidences a relatively large

scatter of log C*, probably due to possible irregularities

in the read-off displacements shortly after the load impo-

sition. On the other hand, n* is practically independent of

the applied stress in conformity with the concept that n*
is the limiting value for the creep in the pseudo iso-free

volume state.

The most practical outcome of the proposed format is

that the generalized log D(t*) vs. log t* dependence can

be utilized for calculating the real log D(t) vs. log t
curves for selected stresses. The procedure employs the

experimentally found constants log C* and n*, which

allow us to calculate the compliance D(t*) for any

selected ‘‘internal’’ time t*. To obtain the corresponding

‘‘real’’ time t we can modify Eq. 8 by introducing e(t) ¼
rD(t)

log ae tð Þ ¼

� B

2:303

8>: 9>; 1� 2mð ÞMrD tð Þ= fg þ DfTc

� �� �
1� 2mð ÞMrD tð Þ þ fg þ DfTc

� �� � ð16Þ

and rearrange Eq. 11:

log t ¼ log t� þ log aeðtÞ ð17Þ
In Figure 7, the log D(t) vs. log t curves for neat

LLDPE and for related nanocomposites are calculated and

compared with experimental curves. The values of log C*
and n* used in the calculations were taken from Table 1.

As can be seen, the compliance curves predicted for vari-

ous stresses fit well experimental curves over the consid-

ered time interval. Some small discrepancies are evident

FIG. 2. TEM images of LLDPE-A380-2 sample at different magnifications.
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only for short times at higher applied stresses, probably

because of inaccurate reading of the displacements imme-

diately after the load imposition Fig. 7 clearly demon-

strates that the discussed uncertainties in the selection of

the inputs B, m, M, fg, and afv do not preclude a fairly

good prediction of compliance curves. It can be con-

cluded that the applied approach previously developed [3,

FIG. 3. Creep compliance D(t) of LLDPE and nanocomposites (T ¼
308C) as a function of time. (a) LLDPE, (b) LLDPE-A200-2, (c)

LLDPE-A380-2. (&) r0 ¼ 1 MPa, (*) r0 ¼ 2 MPa, (~) r0 ¼ 3 MPa,

(!) r0 ¼ 4 MPa, (^) r0 ¼ 5 MPa.

FIG. 4. Isochronous stress–strain curves of LLDPE and nanocomposites

(T ¼ 308C). (a) LLDPE, (b) LLDPE-A200-2, (c) LLDPE-A380-2. (&)

t ¼ 200 s, (*) t ¼ 400 s, (~) t ¼ 600 s, (!) t ¼ 800 s, (^) t ¼1000 s.
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18, 40] for the nonlinear tensile creep of thermoplastics

and their blends can successfully be applied to the

LLDPE nanocomposites.

CONCLUSIONS

Linear low density polyethylene (LLDPE)/fumed silica

nanocomposites prepared by melt compounding were used

to study the nonlinear viscoelastic creep by means of the

previously developed formats for the data processing and

the prediction of the nonlinear tensile creep of thermo-

plastics and their blends. A notable enhancement of the

creep resistance with the specific surface area of the nano-

fillers was found, especially for higher creep stresses. The

free volume theory of the viscoelastic creep was for the

FIG. 5. Superposed creep compliance curves log D(t*) of LLDPE and

nanocomposites (T ¼ 308C). (a) LLDPE, (b) LLDPE-A200-2, (c)

LLDPE-A380-2. (&) r0 ¼ 1 MPa, (*) r0 ¼ 2 MPa, (~) r0 ¼ 3 MPa,

(!) r0 ¼ 4 MPa, (^) r0 ¼ 5 MPa.

FIG. 6. Generalized curves of the creep compliance logD(t*) of

LLDPE and nanocomposites (see Eqs. 8 and 11) (T ¼ 308C). (&)

LLDPE, (*) LLDPE-A200-2, (~) LLDPE-A380-2.

TABLE 1. Parameters of Eq. 10 fitting the creep data of LLDPE and

related nanocomposites.

r0 (MPa) log C* [GPa21] n* R2

LLDPE

1 0.0894 0.2117 0.9983

2 0.1509 0.1841 0.9951

3 0.2268 0.1617 0.9963

4 0.2732 0.1523 0.9931

5 0.2954 0.1450 0.9944

Average 0.2071 0.1710

St.Dev. 0.0860 0.0271

LLDPE-A200-2

1 0.0375 0.2183 0.9962

2 0.1337 0.1864 0.9933

3 0.1507 0.1766 0.9950

4 0.2002 0.1604 0.9980

5 0.3310 0.1310 0.9970

Average 0.1706 0.1745

St.Dev. 0.1073 0.0322

LLDPE-A380-2

1 0.0006 0.2050 0.9974

2 0.0935 0.1784 0.9994

3 0.0956 0.1734 0.9952

4 0.0873 0.1765 0.9960

5 0.1676 0.1575 0.9951

Average 0.0889 0.0889

St.Dev. 0.0593 0.0171
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first time successfully used to construct the generalized

creep curves of nanocomposites by applying the tensile

compliance vs. internal time superposition in the region

of nonlinear viscoelasticity. Assuming that the nonlinear-

ity is mainly caused by the strain-induced increment of

the free volume, the strain-dependent shift factors were

calculated a priori point by point to superpose compliance

curves detected at various stresses. The proposed superpo-

sition procedure was found viable for both neat LLDPE

and nanocomposites with different nanosilicas. A most

practical outcome consists in that the generalized compli-

ance dependences constructed for the pseudo iso-free vol-

ume state of a material can be employed for predicting

the real time-dependent compliance for any selected stress

in the region of fully reversible deformations.
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