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Abstract

The Boltzmann superposition principle (BSP) valid for ‘‘standard linear solids’’ is presented in all textbooks on

viscoelasticity. In practice, the BSP is not applicable to viscoelastic polymers because (i) the apparent limit (if any) of the

stress–strain linearity is very low, (ii) real deformations (stresses) are not infinitesimal, and (iii) tensile deformations give

rise to additional free volume, which affects all currently running deformation processes. Consistent application of the free

volume approach, including the strain-induced free volume, allowed us to derive and verify a new type of the internal

time–tensile strain superposition for a series of single-step nonlinear creeps [J. Kolařı́k, A. Pegoretti, Nonlinear tensile

creep of polypropylene: time–strain superposition and creep prediction, Polymer 47 (1) (2006) 346]. The Boltzmann-like

superposition principle for multistep nonlinear tensile creep, proposed in this paper, consists of (i) the separation of

individual creeps, (ii) their reconstruction for the initial free volume by introducing a specific internal time, and (iii) the

superposition of the reconstructed creeps. The procedure is demonstrated using creep data for three types of commercial

polypropylene.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Creep measurements and predictions are of great
practical importance in any application where
polymeric materials must sustain loads for long
periods of time and maintain their dimensional
stability. Theoretical background of the creep
behavior of polymers has been well elaborated in
the framework of linear viscoelasticity [1–10], which
e front matter r 2008 Elsevier Ltd. All rights reserved
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presumes a linear relation between acting stress and
produced strain. The existing models are mainly
phenomenological and have no direct relation to
molecular composition and structure. Ideally, ma-
terials are assumed to be homogeneous and
rheologically simple, and imposed deformations
infinitesimally small. To this end, an idealized term
of ‘‘standard linear solid’’ (SLS) was introduced
[4,7,8], which meets all requirements of the theory of
linear viscoelasticity. Linearity implies that material
constants (functions) are stress and strain indepen-
dent, so that there is no interaction between
responses to preceding and succeeding loadings
(excitations).
.
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However, it is generally known that the apparent
limit of the linear stress–strain relationship of most
(in particular crystalline) thermoplastics does not
exceed a few tenths of percentage. Beyond this limit,
the produced strain typically rises more than
linearly with the acting stress [4,5,11–16]. The
concept of the linearity limit tacitly implies that
there is a ‘‘break’’ (discontinuity) in some material
parameters controlling mechanical behavior, which
accounts for markedly differing viscoelastic proper-
ties below and above this limit. In our opinion [1],
such a limit can be rather arbitrary because its value
is likely to depend on the accuracy of the method
used: the higher the method accuracy the smaller the
strain at which the deviation from the stress–strain
linearity is detected. Studying nonlinear creep of a
series of six polypropylenes [1] we have shown that
if temperature, pressure and uniaxial tensile stress
are kept constant, the resulting stress–strain rela-
tionship should be nonlinear (compliance rising
with strain). A linear relationship (compliance
independent of stress or strain) would require that
some of the material parameters spontaneously vary
with strain (or stress) in an exactly predefined way
to transform nonlinearity into linearity. As such a
‘‘compensation law’’ would be very fortuitous, the
nonlinear viscoelastic behavior should be viewed as
general while the linear one is a rather special case.

The above conclusion is in conformity with
numerous experimental findings clearly showing
that nonlinear viscoelastic behavior dominates over
a major portion of the entire response interval of
polymeric materials and plays a key role in most
applications. Previously, the stress–strain nonlinear-
ity was tentatively encompassed by introducing an
empirical function of stress specific for individual
test specimens. An alternative approach consisted in
application of empirical power laws and similar
analytical relationships [4,7,11,17]. Usually, a func-
tional representation is used in which effects of time
and strain (or stress) are considered as separable
[4,5]. The multiple integral representation of non-
linear creep operates with mixed terms formally
ascribed to the joint contributions of imposed
stresses to the final deformation [4,7,11], which
seems to lack a clear physical substantiation.
Schapery [18], formulating the nonlinear creep by
means of the principles of irreversible thermody-
namics, introduced a stress-induced shift along
the time scale. A generalized form of the time–
deformation–temperature superposition [19] em-
ploying the concept of the Gibbs energy density
increasing with reversible deformations seems to be
rather complicated for practical applications. Some
recent approaches to nonlinear viscoelastic creep of
polymers use the concept of a ‘‘material clock’’ to
describe, how the time dependence is controlled by
the current state of the material in the course of a
solicitation. The shift factor is introduced to convert
the experimental time into the internal time defined
for a selected reference state of the material. The
quantities presumed to control the material clock
are, e.g., free volume [1,12–16,20–23], strain [23],
stress [24,25] or configurational internal energy
[26,27].

In our opinion, the most useful of these concepts
is that of the free-volume-driven internal clock with
regard to the fact that the phenomenological theory
of viscoelasticity [2–9] has shown that retardation
(or relaxation) times can be viewed as controlled by
the free volume available for molecular (segmental)
motions in polymeric materials. Applying the free-
volume approach to the nonlinear tensile creep of
PP [1,12], PP/poly(styrene-co-acrylonitrile) blends
[13] and PP/cycloolefin copolymer blends [14], we
have derived a formula for the shift factor, which
allows construction of a generalized creep curve
over a longtime interval by using the internal
time–tensile strain superposition. Thus, we were
able [1] (i) to quantitatively describe the nonlinear
creep behavior by introducing a simple set of
material parameters, (ii) to compare the creep
behavior of various PPs by employing their general-
ized compliance curves constructed for a pseudo
iso-free-volume state and (iii) to employ the general-
ized creep curves for prediction of the real time-
dependent compliance for selected stresses (lower
than the yield stress). The objective of this paper is
(i) to employ the previous findings for the analysis
of multistep nonlinear tensile creep of PP and (ii) to
develop a new Boltzmann-like superposition prin-
ciple applicable to polymeric materials showing
nonlinear viscoelastic behavior.

2. Theoretical background of the proposed approach

The strain in isothermal tensile creep, e(t,s), is
generally viewed as consisting of three components
depending on time t and stress s [1,4–12]: (i) elastic
(instantaneous, reversible) ee(s); (ii) viscoelastic
(time-dependent, reversible) ev(t,s); (iii) plastic
(irreversible) ep(t,s):

�ðt; sÞ ¼ �eðsÞ þ �vðt;sÞ þ �pðt;sÞ (1)
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If no plastic deformation is produced in the
course of creeping, the tensile compliance D(t, s) ¼
e(t, s)/s, for the isothermal creep generally reads

Dðt;sÞ ¼ DeðsÞ þDvðt; sÞ (2)

Linear stress–strain behavior implies that magni-
tudes of the creep components are exactly propor-
tional to the magnitude of the applied stress, so that
a creep compliance D(t) ¼ e(t)/s can be defined as a
function of time only [4,5]. Isothermal creep (with-
out any irreversible component) of apparently linear
viscoelastic materials was reported [4,5,11] to obey,
e.g., the Nutting empirical equation

�ðt;sÞ ¼ KNstp (3)

DðtÞ ¼ �ðt;sÞ=s ¼ KNtp (4)

where KN is a constant and 0opp1 is the
creep curve shape parameter reflecting the distribu-
tion of retardation times. The spectrum of retarda-
tion times corresponding to tp can be found in
Ref. [11].
2.1. The Boltzmann superposition principle for

standard linear solids

This principle (BSP) applied to the linear creep
states [4–8] that the response of a material to a given
load is independent of responses of the material to
any load already acting on the material. Thus, each
loading step makes an independent contribution to
the final strain, so that the total strain is obtained by
the addition of all the contributions. In other words,
the BSP states that the effect of a compound cause is
the sum of effects of the individual causes [8].
Another consequence of the BSP [4] is that creep
recovery is a reversal (‘‘mirror image’’) of the
preceding creep [7], i.e., creep and recovery are
identical in magnitude. All these requirements are
met by the (hypothetical) standard linear solid at
infinitesimal strains [4,7]. In the case of time-
dependent materials, the strain e(t,s) is linearly
proportional to the applied stress s, when produced
strains are compared at equivalent periods of time t,
elapsed after respective loadings. Thus, compliance
curves D(t) ¼ e(t,s)/s as a function of time detected
for various stresses are identical, i.e. independent
of applied stress. It is worth noting that the form of
the dependence on time is irrelevant. The formula-
tion of the BSP for a multistep creep of linear
viscoelastic solids under isothermal conditions
reads [4,5]

�ðti; sÞ ¼ DðtjÞs1 þDðtj � t1ÞDs2 þ � � � þDðtj � tk�1ÞDsk

(5)

where stress s1 is acting since tj ¼ 0, added stress
Ds2 since tj ¼ t1, etc. The stresses of concern are the
incremental stresses Dsi (1oipk). The validity of
the BSP means that the additional creep produced
by stress Dsi, added in time tj is identical with the
creep which would occur if no other loadings were
applied before time tj.

2.2. Nonlinear tensile creep as a function of the

fractional free volume

So far, the effects of temperature and hydrostatic
pressure on linear viscoelastic behavior of polymers
have quantitatively been interpreted [3–10] in terms
of the fractional free volume f available for
molecular (segmental) mobility. We have shown
[12–16] that a plausible concept of nonlinear
viscoelasticity can also be based on the consistent
application of the free volume approach. It is
generally known that an isotropic solid body with
Poisson’s ratio no0.5 dilates when deformed in
tension [5–9]. As the strain-induced increment in the
specific volume can be identified with the increment
in the free volume [28–30], the molecular mobility in
polymers becomes dependent on the tensile strain.
The contributions to the fractional free volume f

produced by increasing temperature (above the
glass transition temperature Tg), DfT, and tensile
strain Dfe are expressed by the following equations
(1, 3, 5)

f ðT ; tjÞ ¼ f g þ Df TðTÞ þ Df �ðtjÞ

¼ f g þ afvðT � TgÞ þ ð1� 2nÞ�ðtjÞ (6)

where fg is the fractional free volume in the glassy
state (customarily viewed [3–10] as an iso-free-
volume state with fg around 0.025) and afv is the
expansion coefficient of the free volume, which
can be approximated as the difference between
the expansion coefficients above and below Tg,
i.e., afv ¼ al�ag. At a constant temperature, pres-
sure and stress, f(tj) is proportional to the achieved
strain e(tj):

f ðtjÞ ¼ Qþ k�ðtjÞ (7)

where Q ¼ (fg+DfTc), k ¼M(1�2n) and M is the
strain magnification factor of the most creeping
phase in samples consisting of 2 or 3 phases. M is
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evaluated as the mean ratio of the strain calculated
for the creeping (e.g. amorphous) phase and of the
measured strain. Details on the calculations using
the equivalent box model are given in Refs. [12,14].

The available f controls [2–5] retardation (or
relaxation) times t of polymers:

ln tðf Þ ¼ ln Oþ ðB=f Þ (8)

where O corresponds to the frequency of thermal
motion inside a potential well and Bffi1 is a
numerical factor related to the ratio of the volume
of a jumping segment and of the volume of critical
vacancy necessary for a segment jump. The effect of
changes in f on a retardation time t(f) is routinely
expressed by means of a shift factor along the
logarithmic time scale [2–9]. The time–strain shift
factor log ae(t) defined as the ratio of the retarda-
tion time t(fj)/t(fo) at different strains can be
formulated [1,12] in terms of the mean retardation
time tm (at a constant temperature Tc) considering
two states: (i) tm[e(tj),Tc] for a strain e(tj) achieved at
time tj; (ii) tmo for a reference strain e(to) at time to.
With regard to Eq. (8), the shift factor between the
two states is

log a�ðtÞ ¼ log tmðf jÞ � log tm0ðf 0Þ

¼ � B0½f ðtjÞ � f ðt0Þ�=½f ðtjÞf ðt0Þ� (9a)

where B0 ¼ (B/2.303). In full notation

log a�ðtÞ ¼ �B0k½�ðtjÞ � �ðt0Þ�=f½Qþ k�ðtjÞ�½Qþ k�ðt0Þ�g

(9b)

The following semiempirical equation relating
compliance to time and stress was found appro-
priate for a number of thermoplastics [1,12–16,31]

Dðt;sÞ ¼W ðsÞðt=tmÞ
n (10)

where W(s) is a function of acting stress and n has
an analogous meaning to p in Eqs. (3) and (4).
Combining Eqs. (9a, 9b) and (10) and separating the
effects of time and stress we obtain [1,12]

log DðujÞ ¼ ½log W ðsÞ � n log tm0� þ n½log tj � log a�ðtÞ�

¼ log C þ n log uj (11)

where uj ¼ tj/ae(t) denotes the ‘‘internal time’’ in a
creep experiment. Combining Eqs. (9a) and (11) we
obtain

log uj ¼ log tj þ B0k½�ðtjÞ � �ðt0Þ�=f½Qþ k�ðtjÞ�

� ½Qþ k�ðt0Þ�g (12)
It is to be noted that log D(tj) ¼ log D(uj) is valid
for corresponding tj and uj. The log D(tj) vs. log tj

plot would coincide with the corresponding log
D(uj) vs. log uj plot for extremely low (infinitesimal)
stresses and strains (Dfe-0); thus C and n represent
the limiting values for a hypothetical creep in the
iso-free-volume state. Obviously, such dependence
for infinitesimal strains cannot be obtained experi-
mentally, because of the accuracy and time limits of
real creep measurements.

Eq. (11) anticipates a linear dependence log D(uj)
vs. log uj, which, however, does not correspond to
the linear viscoelasticity. Alternatively, we used a
polynomial of the second degree instead of Eq. (11)
to fit some types of the log D(u) vs. log u

dependences

log DðuÞ ¼ log Ch þ ðaþ b log uÞ log u (13)

So far we have found b ¼ 0 for various types of
PP [1,12], bo0 for high-density polyethylene HDPE
[16] and b40 for poly(ethylene terephthalate) PET
[15]. Our extensive results for these polymers
brought evidence that log C and n (or log Ch, a

and b) are independent of stress (or strain), which is
in conformity with the concept that log C and n are
the limiting values for creep in the (hypothetical)
iso-free-volume state.

3. Experimental section

3.1. Tested polypropylenes

Structure and creep behavior of the tested poly-
propylenes produced by Basell, Ferrara, Italy were
fully characterized in our previous paper [1]. Briefly,
Moplen C30G is isotactic polypropylene recom-
mended for the production of injection-molded parts
(crystallinity: 44.4%). Moplen RP210G is a random
copolymer with 3% of ethylene, designed for blow
molding and sheet extrusion. Due to lower crystal-
linity (36.5%), it shows more profound viscoelastic
behavior than ordinary PP. Moplen EPT30R is a
‘‘reactor’’ blend consisting of 88% of isotactic
polypropylene (crystallinity: 42.2%) and 12% of
ethylene/propylene rubber. This rubber-toughened
polypropylene was prepared by a two-step polymer-
ization reaction, so that spherical domains of rubber
are evenly distributed in PP matrix and bound
by covalent bonds [32]. EPT30R was selected in order
to verify the validity of the proposed approach for a
three-phase material. Preparation of injection-molded
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dumb-bell test specimens (ISO 527) was described in
the previous papers [12–16,32].

3.2. Tensile creep measurements

Tensile creep was measured using an apparatus
equipped with a mechanical stress amplifier (lever)
10:1. A mechanical strain gauge (accuracy of about
2 mm) was connected to the upper clamp of the
specimen to indicate the displacement. Specimen
dimensions: initial distance between grips 90mm;
cross-section 10mm� 4mm. Specimens were stored
for more than 2 years at room temperature (cf. [1])
so that possible interfering effect of physical aging
during creep measurements was excluded. Creep
tests were performed at 2370.3 1C, i.e., about 30K
above the Tg of PP. Mechanical conditioning
preceding a measurement consisted of applying a
stress (for 300min) equal to or higher than the
highest stress applied in the following three-step
creep (which was implemented after a 48 h recov-
ery). Three-step creep measurements were per-
formed at three progressively increasing stress
levels: s1, s1+Ds2, s1+Ds2+Ds3.
Fig. 1. Three-step tensile creep of Moplen RP210G for s1 ¼ Ds2 ¼ D
Creep strain plotted against real time: total strain e(tj) (x); strains prod

e3(tj�t2) (&). (b) Creep compliance plotted against respective real tim

compliance plotted against respective internal time defined by Eqs. (1

parameters [1]: B ¼ 1; M ¼ 1.40; n ¼ 0.4; Q ¼ 0.025.
4. Results and discussion

4.1. Multistep nonlinear tensile creep (MSC)

In this paper, we will mainly analyze relatively
simple nonlinear three-step creeps executed with
stresses s1, Ds2, Ds3 acting in time intervals 0o
tjpt3, t1otjpt3, t2otjpt3, respectively, where t1 ¼

100, t2 ¼ 200, t3 ¼ 300min. Alternatively, creep
experiments were carried out for unequal time
intervals, e.g. t1 ¼ 50, t2 ¼ 150, t3 ¼ 1000min. The
first step necessary for processing experimental data
is the separation of strains produced by creeps ]1–3.
Fig. 1a illustrates the total creep strain and strains
of separated individual creeps as function of time.
The strain e1(tj) produced by creep ]1 is identical
with the total strain e(tj) used for calculating log
D1(tj) in the interval 0otjpt1. As soon as e1(tj) is
extrapolated for t1otjpt2, the strain e2(tj�t1) ¼
e(tj)�e1(tj) and corresponding compliance log
D2(tj�t1) of creep ]2 in the second time interval
t1otjpt2 can be calculated. Analogously, the extra-
polation of e1(tj) and e2(tj�t1) for t2otjpt3 permits
the calculation of e3(tj�t2) ¼ e(tj)�e1(tj)�e2(tj�t1) and
s3 ¼ 4.90MPa imposed at 0, 100, and 200min, respectively. (a)

uced by creeps ]1, 2, and 3, respectively: e1(tj) (J); e2(tj�t1) (W);

e: log D1(tj) (J); log D2(tj�t1) (W); log D3(tj�t2) (&). (c) Creep

5a–15c): logD1(uj)1 (J); logD2(uj)2 (W); logD3(uj)3 (&). Input
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log D3(tj�t2) produced by creep ]3 in the third time
interval t2otjpt3. The strain extrapolation of creep
]1 (or ]2) is based on plots of experimental data e1(tj)
[or e2(tj�t1)] against log tj [or log (tj�t1)] in the
interval 0otjp100 (or 100otjp200); individual plots
are fitted with a polynomial of the second degree,
which is then used for strain calculation at the
following time intervals. It is to be noted that e.g.
creep ]1 is independently measured over three
decades of time (i.e. 0.1–100min), while the following
extrapolation (from 100 to 300min) extends over
about one half of the time decade. Nonetheless, the
accuracy of the strain or compliance data may
decrease with the creep number, due to accumulating
extrapolations and deductions.

Compliances characterizing creeps ]1–3 executed
with s1 ¼ Ds2 ¼ Ds3 are plotted against real time in
Fig. 1b: in the first interval �1olog tp2 (i.e.,
0.1–100min), a simple creep ]1 takes place and
logD1(tj) is plotted against log tj. Analogously, log
D2(tj�t1) of creep ]2 and logD3(tj�t2) of creep ]3
are plotted against log(tj�t1) and log(tj�t2), respec-
tively, over the intervals t1otjpt2 and t2otjpt3. As
expected, the compliance of the individual creeps
notably increases with the creep number due to
the nonlinearity of the viscoelastic behavior of PP.
The addition of any load increases the total creep
strain and, consequently, the available fractional
free volume f(tj) which controls the dynamics of all
concurrently running creeps. For this reason, creeps
]1–3 are not independent of each other, but
necessarily interact. As explained before, a relevant
comparison of nonlinear creeps and their potential
superposition necessitate the compliance plots
against respective internal times. In contrast to a
series of single-step nonlinear tensile creeps (SSC),
the starting values of free volumes of individualized
creeps in a MSC are not identical, but have to be
identified with those at t ¼ 0, t ¼ t1, t ¼ t2. Then
shift factors due to the strain-induced free volume
expansion defined by Eq. (9a) for creeps ]1, 2, and 3
in the 1st, 2nd, and 3rd time intervals, respectively,
read

log a�1ðtÞ ¼ �B0½f ðtjÞ � f ðt0Þ�=½f ðtjÞf ðt0Þ� for t0otjpt1

(14a)

log a�2ðtÞ ¼ �B0½f ðtjÞ � f ðt1Þ�=½f ðtjÞf ðt1Þ� for t1otjpt2

(14b)

log a�3ðtÞ ¼ �B0½f ðtjÞ � f ðt2Þ�=½f ðtjÞf ðt2Þ� for t2otjpt3

(14c)
Corresponding internal times defined by Eq. (12)
are then the following:

log ðujÞ1 ¼ log tj þ B0fk½�ðtjÞ � �ðt0Þ�g

=f½Qþ k�ðtjÞ�½Qþ k�ðt0Þ�g (15a)

log ðujÞ2 ¼ log ðtj � t1Þ þ B0fk½�ðtjÞ � �ðt1Þ�g

=f½Qþ k�ðtjÞ�½Qþ k�ðt1Þ�g (15b)

log ðujÞ3 ¼ log ðtj � t2Þ þ B0fk½�ðtjÞ � �ðt2Þ�g

=f½Qþ k�ðtjÞ�½Qþ k�ðt2Þ�g (15c)

Fig. 1c shows that the log Di (uj)i vs. log(uj)i plots
are virtually linear, very much like in a series of SSC
[1]. At the same time it can be seen that (i) the initial
compliance, (ii) the slope of the dependences and
(iii) the internal time interval increase with the creep
number. Thus additional steps—in comparison with
a series of SSC—should be taken to implement the
superposition of individualized creeps.

4.2. Superposition of the creeps obtained via the

dissolution of a three-step creep

First, we will briefly review the existing concepts
of the creep superposition in order to single out
specific features of the approach proposed in this
paper. If stresses s1, Ds2, and Ds3 were acting on the
SLS in time intervals 0otjpt3, t1otjpt3, t2otjpt3,
respectively, the produced dependences log D1 vs.
log tj, log D2 vs. log(tj�t1) and logD3 vs. log(tj�t2)
would be identical over the first 100min of each
creep, i.e. individual creeps ]1, 2, and 3 from the
multistep experiment would coincide. Naturally, as
creeps of the SLS are independent of each other,
the observed dependences would be identical with
those produced in the single-step creep.

Polymer solids showing nonlinear viscoelastic
properties are very different from the SLS: (i) their
response to a load depends on loads already acting;
(ii) simultaneously running creeps interact with one
another (due to the controlling role of the actual
free volume), which invalidates their additivity;
(iii) recovery is not a reversal of the preceding creep
because f(tj) rises with time in the course of
the creep, while decreases during the recovery. For
these reasons [1,12], the time–strain superposition
of single-step nonlinear tensile creeps cannot be
achieved by using plots against real time, but
internal time has to be introduced. The super-
position works well for a series of SSC, i.e. the log
D(uj) vs. log (uj) dependences obtained for different
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stresses superpose in one generalized dependence
over an extended scale of internal time [1,12], if the
reference state is identified with the initial non-
deformed state. We have also shown [1,14,16] that
the generalized creep curve obtained through the
internal time–tensile strain superposition is in very
good accord with experimental long-term creep
curves. To implement this superposition, the hor-
izontal shift factors ae(t) are to be calculated a priori

for each point of the superposed compliance
dependences since ae(t) grows with the free volume
in a creeping specimen, due to the rising creep strain
e(tj). It is worth noting that the vertical shifts used,
e.g., in the time–temperature superposition [2–7] do
not enter the internal time–strain superposition
because the creep temperature is constant and the
decrease in specimen density, due to the strain-
induced expansion in the course of creep experi-
ments, is virtually negligible.

Analogous superposition of the individual non-
linear creeps obtained via the dissolution of a MSC
is much more complex because several facts have to
be taken into account: (i) actual f(tj), which controls
the scales of the internal times of all simultaneously
running creeps, is continuously increasing in pro-
portion to total strain e(tj) according to Eq. (7);
(ii) imposition of an additional load produces a
step-like increase in e(tj) and f(tj); (iii) individual
creeps start at different f(tj) and proceed at different
free volume levels. While the effect of f(tj) on log
uj can be described quantitatively by means of
Eqs. (15a–15c), log D(uj) depending on f(tj) and the
loading history can be anticipated only qualita-
tively. The latter fact necessitates the usage of the
compliance experimental data in the following
superposition of separated creeps ]1–3.

As expected, in a series of SSC we observed
[1,12–16] that the higher the stress and produced
strains (over the creep time interval), the higher the
corresponding values of the compliance and shift
factor (observed at a certain creep time). However,
it is essential to note that the parallel increases in
log(uj) and logD(uj) are ‘‘proportional’’, i.e. the
ratio of the increments Dlog(uj) and DlogD(uj) over
a selected time interval is independent of stress.
Consequently, all dependences logD(uj) vs. log uj

coincide and values of log C and parameter n

defined by Eq. (11) are independent of stress.
In contrast, in the model MSC with stresses
s1 ¼ Ds2 ¼ Ds3 we can observe (Fig. 1c) that
increments DlogD1(uj)1oDlogD2(uj)2oDlogD3(uj)3
(e.g. over the time interval 0.1–100min of each
creep) are rising faster than the corresponding
increments Dlog(uj)1oDlog(uj)2oDlog(uj)3. The rea-
son is that creeps ]2 and 3 do not start from the
non-deformed state, but their initial compliance is
higher in proportion to already existing deforma-
tion, which accounts for an ‘‘excessive’’ increase in
compliance in the course of these creeps. None-
theless, it is essential to point out that the observed
dependences are linear very much like those in the
series of SSC. To apply the previously developed
superposition principle [1,12] to individualized
creeps from MSC, it is necessary to equalize the
slope of the dependences visualized in Fig. 1c. In
other words, Dlog(uj)i should correspond to the
observed DlogDi(uj)i in a similar way as in a series
of SSC. Considering creep ]1 as the ‘‘reference’’
creep in a MSC, the ratio DlogD2(uj)2/Dlog D1(uj)1
or Dlog D3(uj)3/Dlog D1(uj)1 should be taken into
account concurrently with the ratio of the corre-
sponding internal time scales. In this respect, any
internal time has to be regarded as an entity
consisting of two inseparable terms, namely real
time and shift factor, which cannot be controlled
independently. Using Eqs. (15a–15c) we can for-
mulate the following increments of internal times
for creeps ]1–3:

D log ðujÞ1 ¼ ½log ðt1Þ � log ðt1sÞ� þ B0½f ðt1Þ

� f ðt1sÞ�=½f ðt1Þf ðt1sÞ�

¼ D log ðtjÞ1 þ D log a�1ðtÞ (16a)

D log ðujÞ2 ¼ ½log ðt2 � t1Þ � log ðt2s � t1Þ�

þ B0½f ðt2Þ � f ðt2sÞ�=½f ðt2Þf ðt2sÞ�

¼ D log ðtjÞ2 þ D log a�2ðtÞ (16b)

D log ðujÞ3 ¼ ½log ðt3 � t2Þ � log ðt3s � t2Þ�

þ B0½f ðt3Þ � f ðt3sÞ�=½f ðt3Þf ðt3sÞ�

¼ D log ðtjÞ3 þ D log a�3ðtÞ (16c)

where t1s, t2s, and t3s are the times for which
log(uj)1 ¼ log(uj)2 ¼ log(uj)3 ¼ 0, respectively. Sub-
sequently we can estimate the following ratios:

T2 ¼ ½D log ðtjÞ1 þ D log a�1ðtÞ�=½D log ðtjÞ2

þ D log a�2ðtÞ� (17a)

T3 ¼ ½D log ðtjÞ1 þ D log a�1ðtÞ�=½D log ðtjÞ3

þ D log a�3ðtÞ� (17b)

The corresponding values of Dlog D1(uj)1, Dlog
D2(uj)2, and Dlog D3(uj)3 over the indicated incre-
ments of internal times are to be extracted from
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experimental data, in order to evaluate the follow-
ing ratios

R2 ¼ D log D1ðujÞ1=D log D2ðujÞ2 (18a)

R3 ¼ D log D1ðujÞ1=D log D3ðujÞ3 (18b)

In analogy to the internal time–tensile strain
superposition of a series of SSC [1,12–16], it is
obvious that increasing free volume necessarily
expands the internal time scales of creeps obtained
by the dissolution of a MSC (Fig. 1c). Thus, the
‘‘excessive’’ increase in logD(u) of creeps ]2 and 3 is
to be encompassed (‘‘projected’’ into the internal
time scale) through an additional ‘‘scale expansion
factor’’ G to maintain the proportionality between
the corresponding increments of compliance and
internal time. Introducing Eqs. (17a, 17b) and (18a,
18b) into Eqs. (15a–15c) the ‘‘transformed internal
time’’ for creep ]2 or 3 is obtained:

logðujÞ1 ¼ log tj þ B0k½�ðtjÞ � �ðt0Þ�=f½Qþ k�ðtjÞ�

� ½Qþ k�ðt0Þ�g (19a)
Fig. 2. The internal time–tensile strain superposition of compliances

logD1(uj)1 (J); logD2(uj)2 (W); logD3(uj)3 (&); applied stresses and in

compliance plotted against respective transformed internal time defined

superposing internal time defined by Eqs. (21a, 21b). (c) Generalized com

superposing internal times defined by Eqs. (21a, 21b).
logðujÞ2tr=G2 ¼ logðtj � t1Þ þ B0k½�ðtjÞ � �ðt1Þ�

=f½Qþ k�ðtjÞ�½Qþ k�ðt1Þ�g (19b)

logðujÞ2tr=G3 ¼ logðtj � t2Þ þ B0k½�ðtjÞ � �ðt2Þ�

=f½Qþ k�ðtjÞ�½Qþ k�ðt2Þ�g (19c)

where

G2 ¼ T2=R2 (20a)

G3 ¼ T3=R3 (20b)

Fig. 2a visualizes the compliance plots against the
transformed internal times defined by Eqs. (19a–19c).
As can be seen, the dependences are parallel, but the
discrepancies (gaps) between them are preserved;
they can be assigned to different values of f(tj) at the
outset of creeps ]1–3. Thus, the shift factor between
the starting times of creeps ]2 and 1 or creeps ]3
and 2 should be added to the shift factors defined
in Eq. (19b) or (19c) in order to superpose the
transformed compliance curves plotted in Fig. 2a.
In this way, the ‘‘superposing shift factors’’ (hence
obtained from the three-step tensile creep of Moplen RP210G.

put parameters are identical with those given in Fig. 1. (a) Creep

by Eqs. (19a–19c). (b) Creep compliance plotted against respective

pliance curve fitting all experimental data of MSC plotted against



ARTICLE IN PRESS

Fig. 3. Three-step tensile creep of Moplen C30G for s1 ¼ 6.14;

Ds2 ¼ 4.91; Ds3 ¼ 3.68MPa imposed at 0, 100, and 200min,

respectively. Creep compliance plotted against superposing

internal time defined by Eqs. (21a, 21b): logD1(uj)1 (J);

logD2(uj)2 (W); logD3(uj)3 (&). Input parameters: B ¼ 1;

M ¼ 1.54; n ¼ 0.4; Q ¼ 0.025.

Fig. 4. Three-step tensile creep of Moplen EPT30R for

s1 ¼ 7.34; Ds2 ¼ 4.89; Ds3 ¼ 3.67MPa imposed at 0, 100, and

200min, respectively. Creep compliance plotted against super-

posing internal time defined by Eqs. (21a, 21b): logD1(uj)1 (J);

logD2(uj)2 (W); logD3(uj)3 (&). Input parameters: B ¼ 1;

M ¼ 1.49; n ¼ 0.4; Q ¼ 0.025.
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the subscript ‘‘sp’’) for creep ]2 or 3 are obtained.
This operation means that the compliance curves ]2
and 3 are additionally shifted as an entity in Fig. 2b.
It should be noted that the compliance curve of
creep ]2 is shifted across the interval of the internal
time of creep ]1 for which G1 ¼ 1. On the other
hand, the compliance curve of creep ]3 is shifted
across the interval of the transformed internal time
of creep ]2, so that the factor G2 has to be
considered. Thus, the final plots leading to the
superposition of creeps ]1–3 are the following: log
D2(uj)2 is plotted against

logðujÞ2sp ¼ logðujÞ2tr þ B0k½�ðt1Þ=QÞ�=½Qþ k�ðt1Þ�

(21a)

and log D3 (uj)3 against

logðujÞ3sp ¼ logðujÞ3tr þ G2B
0k½�ðt2Þ � �ðt1Þ�

=f½Qþ k�ðt1Þ�½Qþ k�ðt2Þ�g (21b)

The final plots in Fig. 2b document that the
superposition defined by Eqs. (21a, 21b) is fairly
good. Alternatively, the conclusive generalized
dependence is visualized in Fig. 2c where all
experimental data are considered as an ensemble.
The parameters of the generalized dependence, log
C ¼ �0.06 and n ¼ 0.08, are very close to the values
characterizing the generalized dependence obtained
through the superposition of a set of SSC in our
previous paper [1].

To demonstrate the validity of the proposed
superposition principle for MSC, further examples
for different sequences of the stress increments and/
or different time intervals of individual creeps are
given for three types of polypropylenes. Fig. 3
shows a very good superposition obtained for
Moplen C306G loaded with s14Ds24Ds3, where
the differences between subsequent stresses are
relatively small. A possible effect of much higher
stress differences was tested using Moplen EPT30G.
Fig. 4 reveals that the superposition is quite
satisfactory even when the internal time scales are
extended up to much higher values than in the
preceding figures. Fig. 5 documents the super-
position for s14Ds24Ds3, where, however, the
intervals t1�to, t2�t1, and t3�t2, are markedly
increasing, namely 50, 100, and 1000min, respec-
tively. Also, in this case, the superposition is quite
good despite the fact that relatively short creeps ]1
and 2 have to be extrapolated up to the total time
corresponding to 1150min. To test the accuracy
of calculations, extremely short intervals of experi-
mental time were selected, i.e., 20, 50, and 100min.
Fig. 6 shows that even this experiment leads to
the plausible superposition, which means that a
three-step creep lasting 170min provides reliable
information.

5. Conclusions

The paper is the first to present a successful
procedure for the superposition of nonlinear creeps
obtained by the dissolution of a multistep creep.
The proposed superposition principle is necessarily
much more complicated and sophisticated than
the Boltzmann superposition principle suggested for
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Fig. 5. Three-step tensile creep of Moplen EPT30R for

s1 ¼ 6.06; Ds2 ¼ 3.63; Ds3 ¼ 2.42MPa imposed at 0, 50, and

150min and lasting 1150, 1100, and 1000min, respectively. Creep

compliance plotted against superposing internal time defined by

Eqs. (21a, 21b): logD1(uj)1 (J); logD2(uj)2 (W); logD3(uj)3 (&).

Input parameters: B ¼ 1; M ¼ 1.49; n ¼ 0.4; Q ¼ 0.025.

Fig. 6. Three-step tensile creep of Moplen RP210G for s1 ¼ 7.38;

Ds2 ¼ 3.69; Ds3 ¼ 2.46MPa imposed at 0, 20, and 70min and

lasting 170, 150, and 100min, respectively. Creep compliance

plotted against superposing internal time defined by Eqs. (21a,

21b): logD1(uj)1 (J); logD2(uj)2 (W); logD3(uj)3 (&). Input

parameters [1]: B ¼ 1; M ¼ 1.40; n ¼ 0.4; Q ¼ 0.025.
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idealized ‘‘standard linear solids’’. The free-volume
theory of viscoelasticity was used to derive and
verify the tensile compliance vs. internal time super-
position in the region of nonlinear viscoelastic
behavior of polypropylene, poly(propylene–ethylene)
and rubber-toughened polypropylene. The used
concept assumes that the observed nonlinearity is
caused by the strain-induced increment of the free
volume. The strain-induced additional free volume
rising with the creep strain accounts for shortening of
retardation times, which control all concurrently
running creeps in MSC.

Our procedure requires the following steps: (i) the
dissolution (decomposition) of the total MSC strain
into the strains produced by individual creeps; (ii) a
priori point-by-point calculation of internal times
for the individualized creeps, which are necessary
for comparative plots and their superposition;
(iii) as the free volume at the outset of subsequent
creeps in MSC increases simultaneously affecting
both retardation times and detected compliance,
creep ]1 is taken as a ‘‘reference state’’ and the
subsequent creeps are to be transformed (recon-
structed) for the same conditions. After completing
these operations, the log Di (u) vs. log ui depen-
dences of individualized creeps superpose forming a
generalized curve (over extended time scale) corre-
sponding to a pseudo iso-free-volume state. The
generalized curves obtained from MSC are identical
with analogous curves produced via the super-
position of a series of SSC [1]. From this point of
view, a three-step creep can substitute for a series
(say 4–5) of SSC and lead to notable time savings.
The generalized log D(u) vs. log u dependences can
reversely be used for calculating a long-term log
D(t) vs. log t dependences for any selected stress
(in the interval up to the yield stress) as explained in
Ref. [1]. The proposed superposition procedure was
found viable for all the studied types of PP as well as
for various loading sequences and time intervals.
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