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Abstract

In most practical applications, isothermal compliance of polymeric materials depends on both time and stress so that their non-linear

viscoelastic behavior is of primary importance. A concept is adopted that the non-linearity of tensile creep is mainly brought about by the strain-

induced increment of the free volume (in materials with Poisson ratio smaller than 0.5). Consequently, the traditional stress-strain linearity limit

can be viewed as an artificial limit related to limited accuracy of the measurements at low stresses and strains. The internal time—tensile

compliance superposition of non-linear creep data is applied to construct a generalized compliance curve, which corresponds to a pseudo iso-free-

volume state. The superposition of compliance curves obtained at different stresses requires shift factors along the time axis calculated a priori for

individual data points. As the generalized curve can be generated by means of short-term creeps, the proposed procedure offers essential savings of

experimental time. A most practical outcome of the outlined format is that the generalized dependence can be employed for predicting the real

time-dependent compliance for any stress in the range of reversible strains. The results indicate that the compliance of PPs decreases with their

crystallinity, while their creep rates are almost identical. Only rubber-toughened PP does show a slightly higher creep rate, which is attributed to

the ‘softening’ effect of rubber particles in the PP matrix.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The dimensional stability of thermoplastics exposed to a

constant load for a period of time corresponds to their

resistance to creep [1]. The acquisition of creep data and

their quantitative analysis, extrapolation and/or prediction are

still urgent tasks of materials research. The creep behavior of

many industrially important polymers has already been

described in many papers, which are reviewed in Refs. [2,3].

To date, creep behavior of polymeric materials has mostly been

reported in a graphical form as documented in an extensive

collection [2]. When experimental data can be fitted by a

suitable equation, their storage and subsequent characterization

of the creep process are facilitated. However, proposed

equations are mainly empirical and their validity may be

limited to particular materials and/or test conditions.
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Theoretical background of the creep behavior of polymers

has been well elaborated in the framework of the linear

viscoelasticity [4–11]. This theory assumes that compliance

(or modulus) is a function of time, but not of stress or strain.

Ideally, materials are assumed to be homogeneous and

rheologically simple and imposed deformations are infinite-

simally small. However, polymeric materials used in practice

are usually heterogeneous and rheologically complex and

produced deformations are far from being infinitesimal. A

characteristic feature of most thermoplastics, particularly of

partially crystalline ones, is a very low limit of the linear

stress–strain relationship, say a few of tenths of percent [12].

For instance, identical creep compliance responses of

polymeric materials were observed for strains less than

0.2% [13]. Beyond this limit, isothermal compliance (or

modulus) becomes a function of both time and stress (or

strain). Anyway, non-linear viscoelastic behavior occurs over

a major portion of the entire response interval of most

polymeric materials and plays a key role in most

applications. Quantitative data analysis in the non-linear

region is much more difficult than in the linear region and
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requires a deeper understanding of the underlying processes

controlling the mechanical response [6,7,11–28].

Recent approaches to non-linear viscoelasticity of polymers

mostly use the concept of a ‘material clock’ to describe how the

instantaneous rate of retardation (or relaxation) is controlled by

the current state of the material in the course of a solicitation. In

this concept, the internal time of a material differs from the

laboratory time. The shift factor is introduced to convert the

experimental time into the internal time in a reference state of

the material. The proposed quantities controlling a material

clock are, e.g. free volume [13,18–20,23,25,26,29–31], strain

[13] or stress [32]. Probably the most useful of these concepts is

that of the free volume with regard to the fact that the

phenomenological theory of viscoelasticity [4–11] has shown

that retardation (or relaxation) times are controlled by the free

volume available for molecular (segmental) motions in

polymeric materials. It is generally known that an isotropic

solid body with Poisson’s ratio n!0.5 dilates when deformed

in tension [7–11]. As the strain-induced increase in specific

volume can be identified with the increase in free volume

[33–35], the molecular mobility in polymers is markedly

tensile strain-dependent. An analogous acceleration of creep or

relaxation in the case of shear (or torsion) deformations, which

are presumed not to be accompanied by mechanically induced

volume dilatation, is still a matter of dispute [20]. To capture

the non-linear behavior under shear-dominated loading, the

free volume approach was formally modified by assuming that

also an imposed shear deformation results in a restructuring of

the polymer chains and thus accounts for enhancement of

molecular mobility [13,25]. Although this generalized

approach was formally quite successful, physical meaning of

the parameters associated with the distorsional effects is to be

clarified.

Recently, a thermodynamic theory of the non-linear

viscoelasticity of glassy polymers has been proposed [36]

and applied to their yield mechanism [37]. Using the concept of

the Gibbs energy density increasing on reversible defor-

mations, the authors generalized the time–temperature super-

position in the form of the time–deformation–temperature

superposition. Another thermodynamically consistent, non-

linear viscoelastic approach has been proposed for modeling

glassy polymers [38,39], which introduces the configurational

internal energy as an alternative material clock. However, both

models are extremely complex and their application to a

specific material would require a high number of various

material parameters (up to 29 in Ref. [39]) from independent

experiments. So far the models have not been modified and

verified for creep experiments.

The creep behavior of polypropylene (PP), which ranks

among the most used thermoplastics, has been studied in a

series of papers [2,3,12,29,30,40–46]. As the reported stress-

strain linearity limit of PP is very low, creep measurements

under this limit are inaccurate and impractical because they do

not provide data useful for practice. Applying the free volume

approach to the non-linear tensile creep of PP [3] and of the PP/

SAN [29] or PP/cycloolefin copolymer blends [30], we have

derived a formula for the shift factor, which allows to construct
a generalized creep curve over a long time interval by using the

time-tensile strain superposition. In this comparative study, we

have adopted the developed format to analyze the effect of the

composition and crystallinity of six different species of

commercial PPs on their creep behavior. It is important to

realize that the non-linear creep may develop a critical material

property in many applications. Our objectives are (i) to

quantitatively describe the non-linear creep behavior by

introducing a set of material parameters, (ii) to compare

generalized compliance curves of studied PPs constructed for a

pseudo iso-free-volume state by superposing data obtained for

various stresses and (iii) to employ the generalized creep

curves for prediction of the real time-dependent compliance for

a selected stress (lower than the yield stress).
2. Theoretical background

As the strain-induced volume increment of the materials can

be identified with an increment in the free volume [33–35],

increasing strain in the tensile creep accounts for an increase in

molecular mobility and a perceptible shortening of retardation

times. However, quantification of this concept suffers from a

series of approximations, because ‘auxiliary’ quantities

occurring in the derived equations are difficult to determine.
2.1. Empirical function for fitting the creep of polypropylene

The strain in tensile creep, 3(t,s,T), depending on time t,

stress s and temperature T, is usually viewed as consisting of

three components: [1,6–11] (i) elastic (instantaneous, revers-

ible) 3e(s,T); (ii) viscoelastic (time-dependent, reversible)

3v(t,s,T); (iii) plastic (irreversible) 3p(t,s,T):

3ðt;s;TÞ Z 3eðs;TÞC3vðt;s;TÞC3pðt;s; TÞ (1)

If no plastic deformation is produced in the course of

creeping, the tensile compliance D(t,s)Z3(t,s)/s for the

isothermal non-linear creep reads

Dðt;sÞ Z DeðsÞCDvðt; sÞ (2)

It would be practical [7,47] to express the compliance as a

product of independent functions of time, stress and

temperature, i.e. D(t,s,T)Zconst!g1(t) g2(s) g3(T). However,

experimental results often indicate interrelations between these

presumably independent functions. The Arrhenius equation is

suitable for g3(T) at T!Tg, while the Williams–Landel–Ferry

(WLF) equation is used [5,7] in the interval Tg!T!TgC
100 K. Empirical equations proposed to fit D(t,s) of plastics

were reviewed in Refs. [1,3,14,43,47]. Analogous functions

were proposed for Dv(t,s), but there is no doubt that D(t,s) is a

much more practical function for handling the creep behavior

of polymeric materials. A relatively simple equation was found

suitable for describing isothermal creep of polypropylene and

its blends: [3,29,30,40].

log Dðt;sÞ Z log WðsÞCn log
t

trm

� �
(3)



J. Kolařı́k, A. Pegoretti / Polymer 47 (2006) 346–356348
where W(s) is a function of stress (usually can be approximated

by the power law or hyperbolic sine [14]), trm is the mean

retardation time and 0%n%1 is the shape parameter reflecting

the distribution of retardation times. Indicated parameters are

generally determined a posteriori by fitting experimental data.

The spectrum of retardation times corresponding to the power

function tn can be found in Ref. [14].
2.2. Tensile creep as a non-iso-free volume process

The free volume concept provides a simple unifying basis

for explaining the effects of temperature, hydrostatic pressure,

tensile deformation, chain ends, diluents (plasticizers), the state

of physical aging, etc. on the viscoelastic behavior of polymers.

The dimensionless fractional free volume [4–8,10] is routinely

defined as

f Z
ðV KVhÞ

V
Z

Vf

V
(4)

where V is the specific volume, Vh is the specific volume

occupied by molecules (extrapolated from the melt without

change of phase [8]) and Vf is the free volume. The free volume

is presumed [4,35] to consist of vacancies of about the same

size as mobile molecular segments. The glassy state of

polymers is generally viewed [4–8,10] as an iso-free-volume

state with a fractional free volume fgZ0.025 (the secondary

relaxation processes associated with the motions of side chains

or short segment of backbones account [48] for small changes

in fg). If solely the effects of temperature T and of time-

dependent tensile strain 3(t) in the region of reversible

deformations are considered, the fractional free volume can

be expressed as

f ½T ; 3ðtÞ� Z fg CafvðT KTgÞC ð1K2nÞ3ðtÞ

Z fg CDfT CDf3 (5)

where afv is the expansion coefficient of the free volume at TO
Tg (which can be approximated as the difference between the

expansion coefficients of the material above and below Tg, i.e.

afvZalKag), n is Poisson’s ratio and [(1K2n) 3(t)] is the

strain-induced dilatation (terms including 3(t)2 and 3(t)3 are

neglected). It is essential to note that an increase in the

specimen volume by 1% due to tensile deformation, i.e. Df3Z
0.01, leads to free volume f at Tg. The latter is assumed to

control retardation times tr according to the following equation

[4,10,49]:

ln tr Z ln U C
B

f

� �
(6)

where U is the frequency of thermal motion inside a potential

well and B is a numerical factor related to the ratio of the

volume of a jumping segment to the volume of critical vacancy

necessary for the implementation of a segment jump (B is

generally expected to be close to 1). The effect of f on tr is

routinely expressed by means of the shift factor log a along the

time scale [3,10,17]:
log a Z log trðf2ÞKlog trðf1Þ (7)

where f2Of1. The time-strain shift factor, log a3(t), defined as

the ratio of the mean retardation time trm[3(t),Tc] at a strain 3(t)

and trmi[3iZ0,Tc] for initial time tiZ0 (at a constant

temperature Tc) is obtained [3] by combining Eqs (5) and (7):

log a3ðtÞ ZKðB=2:303Þ
½ð1K2nÞM3ðtÞ=ðfg CDfTc

Þ�

½ð1K2nÞM3ðtÞC ðfg CDfTc
Þ�

(8)

where M (derived in the next section) is the ratio of the average

strain of the creeping phase (or component) in the multiphase

test specimen and of measured strain. The values of log a3(t)

needed for the time-strain superposition are to be calculated a

priori as a function of 3(t). In this strain-based formulation,

log a3(t) is not a constant for an isostress creep curve, but grows

from point to point with the creep strain due to increasing free

volume in the creeping specimen. Thus a3(t) is very different

from the shift factor in the time-temperature superposition,

which is constant for the whole isotherm creep curve and is

obtained a posteriori by means of an empirical shift of the

experimental curve towards the selected reference curve.

If trm of Eq. (3) obeys Eq. (7), then isothermal D(t,s) can be

expressed as

log Dðt; sÞ Z ½log WðsÞKn log trmi Kn log a3ðtÞ�Cn logðtÞ

Z log Cðt;sÞCn log t

(9)

To separate the effects of stress and time, Eq. (9) can be

rewritten in the following form:

log Dðt�;sÞ Z ½log WðsÞKn log trmi�Cn½log tKlog a3ðtÞ�

Z log C�ðsÞCn�log t�

(10)

where parameters C* and n* are related to internal time t*

which reads:

log t� Z log t C ðB=2:303Þ

!
½ð1K2nÞM3ðtÞ=ðfg CDfTc

Þ�

½ð1K2nÞM3ðtÞC ðfg CDfTc
Þ�

(11)

The log D(t) vs. log t plot would coincide with the log D(t*)

vs. log t* plot for extremely low stresses and strains, for which

Df3/0; thus C* and n* are the limiting values of C and n for

the creep in a (hypothetical) pseudo iso-free volume state. Eq.

(10) anticipates a linear dependence of log D(t*) vs. log t*,

which, however, has nothing to do with the linear viscoleas-

ticity. Alternatively, to characterize some long-term log D(t*)

vs. log t* dependencies, e.g. of poly(ethylene terephthalate)

and of its blends with impact modifiers, a polynomial of the

second degree [31] was to be used:

log Dðt�;sÞ Z log C�ðsÞC ða� Cb�log t�Þlog t� (12)
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2.3. Strain magnification factor for the amorphous phase in

crystalline polymers

As the crystalline phase has distinctly lower compliance

than the amorphous phase at TOTg, the viscoelastic processes

underlying the creep in crystalline polymers at TOTg take

mainly place in the amorphous phase. The percolation theory

shows [50–53] that the critical volume fraction (percolation

threshold) of a component (phase) consisting of single-size

spheres is about vcrZ0.156. Thus the co-continuity of

amorphous and crystalline phases is obvious in polypropylenes

with crystallinity attaining 35–50%. A dual phase structure can

be visualized in a simplified manner by a two-parameter

equivalent box model (EBM) (Fig. 1), which was successfully

used in the predictive formats for the moduli, yield strength,

permeability, etc. [54–58] of two-component heterogeneous

materials.

To account for differing strains of amorphous (subscript 1)

and crystalline (subscript 2) phases in the EBM, the strain-

magnifying factor M can be introduced as the mean ratio of the

actual (microscopic) strain of the amorphous phase and the

measured (macroscopic) strain of the specimen [3]. If a

crystalline polymer is deformed, the strain of the amorphous

and crystalline fractions coupled in parallel, i.e. v1p and v2p, is

identical with the measured strain. On the other hand, if the

crystalline phase has the compliance by 2–3 orders of

magnitude lower than the amorphous phase above its Tg, it is

evident that the crystalline fraction v2s (Fig. 1) coupled in series

is not perceptibly deformed in the course of the creep. As the

displacement in the fraction v1s is equal to the macroscopic

displacement, the resulting strain of the amorphous phase

coupled in series is higher than the measured strain;

consequently, the generation of the strain-induced free volume
Fig. 1. Equivalent box model (EBM) for a two-component system

(schematically).
in the fraction v1s will be higher than in the fraction v1p. As we

have shown, [3,29,30] the mean value of M for the amorphous

phase is

M Z 1 C
v2s

v1

� �
(13)

Utilizing a universal formula for the elastic modulus (or

compliance) proposed by the percolation theory [50–53] for

heterogeneous binary systems, we have derived [54–58] the

following equations for the volume fractions of the EBM:

v1p Z
v1 Kv1cr

1Kv1cr

� �q

(14a)

v2p Z
v2 Kv2cr

1Kv2cr

� �q

(14b)

where v1cr and v2cr are the critical volume fractions and q is the

critical universal exponent. As the EBM in Fig. 1 is a two-

parameter model, only two of the four volume fractions are

independent. The fractions v1s and v2s can be calculated by

using the following relations:

v1s Z v1Kv1p (15a)

v2s Z v2Kv2p (15b)

Values of q were mostly reported [51–55] in an interval of 1.6–

2.0 so that qZ1.8 may be used as a typical value. Considering

PP as a two-phase system, we have used v1crZv2crZ0.156 and

qZ1.8 for approximate calculations of the parameter M.
3. Experimental section

3.1. Tested polypropylenes

Some properties of tested polypropylenes are summarized

in Table 1. In brief, Mosten 58.412 is isotactic polypropylene

produced by Chemopetrol, Litvı́nov, Czech Republic. The

other species are products of Basell, Ferrara, Italy. Moplen

EPT30R is a blend consisting of 88% of isotactic poly-

propylene and 12% of ethylene/propylene rubber (EPR). This

rubber-toughened polypropylene (RTPP) is prepared by a two-

step polymerization reaction so that spherical domains of EPR

are evenly distributed in PP matrix and bound by covalent

bonds [58]. Moplen C30G is isotactic polypropylene rec-

ommended for the production of injection-molded products.

Moplen RP210G is a random copolymer with 3% of ethylene

designed for blow molding and sheet extrusion. Moplen

HP500H is a homopolymer suitable for extrusion and injection

molding. Moplen EP548S is a high-melt-flow-rate heterophase

polypropylene copolymer mainly intended for thin wall

injection molding. Preparation of injection-molded dumb-bell

test specimens (ISO 527) was described in previous papers

[3,12,29–31,62,63].



Table 1

List of studied polypropylenes

Product Code MFIa

(g/10 min)

Density

(g/cm3)

Tm
b (8C) X1

c (%) X2 (%)d LP (nm)e Mf

Mosten 58412 PP1 3 0.9065 173.1 48.4 50.7 13.1 1.59

Moplen EP548S PP2 44 0.9037 168.3 46.3 47.8 13.8 1.57

Moplen HP500H PP3 1.8 0.9046 167.2 44.4 46.1 14.9 1.54

Moplen C30G PP4 6 0.9043 166.9 44.4 46.3 13.8 1.54

Moplen EPT30R PP5 3.5 0.8994 167.9 39.8 42.2 13.1 1.49

Moplen RP210G PP6 1.8 0.8912 151.3 36.5 38.4 12.2 1.40

a Melt flow index at 230 8C and a load of 2.16 kg.
b Melting temperature in the first DSC scan (for details on the method see Ref. [59]).
c Crystallinity in the first DSC scan by using DHZ207 J/g [60].
d Crystallinity in the second DSC scan.
e Long period from WAXS [61].
f Strain magnification factor from Eq. (13).
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3.2. Tensile creep measurements

Tensile creep was measured by using an apparatus equipped

with a mechanical stress amplifier (lever) 10:1. A mechanical

strain gauge (with an accuracy of about 2 mm) was connected

with the upper clamp of the specimen to indicate the

displacement. Specimen dimensions: initial distance between

grips 90 mm; cross-section 10 mm!4 mm. Specimens were

stored and creep tests were implemented at 23G1 8C, i.e. about

30 K above Tg of PP. Short-term measurements in the interval

0.1–100 min were performed at five stress levels with one test

specimen; each measurement was followed by a 22 h recovery

before another creep test (at a higher stress) was initiated. Test

specimens were used only once for long-term creep measure-

ments in the interval 0.1–10,000 min. Specimens for creep

studies were stored for at least 6 months at room temperature to

exclude possible interfering effect of physical aging during

creep measurements. Mechanical preconditioning preceding

the series of short-term creeps consisted in applying a stress

(for 100 min) equal to or higher than the highest stress applied

in the series of creep measurements. Long-term measurements

were preceded by application of a stress, which produced

within 100 min a strain larger than the expected final strain of

the intended experiment; the following recovery (before the

registered creep was initiated) was about 24 h.
4. Results and discussion

4.1. The time-tensile strain superposition of short-term

compliance dependencies acquired for different stresses

The stress-strain linearity is evidenced by the coincidence

(overlapping) of the compliance curves acquired for different

stresses. To this end we have selected PP6 characterized by a

more pronounced viscoelastic behavior due to lower crystal-

linity. Fig. 2(a) including the short-term creeps of PP6

(Table 2) shows that increasing stress accounts for (i) an

increase in D(t,s) and (ii) an increase in the derivative

dlog D(t,s)/dlog(t) with the elapsed time of creeping.

Analogous features revealing the non-linear viscoelastic
behavior were also observed for the other PPs. Obviously,

the as-measured compliance curves for different stresses

cannot be superposed by means of simple shifts along the

axes. An alternative superposition procedure consists in

plotting the compliance data against the internal time t*.

Although it is quite clear how the shift factor log a3(t) is to be

calculated, a crucial problem is the availability, reliability and

accuracy of the input data, i.e. B, fg, afv, M and n(3,t). As

indicated by Eqs. (10) and (11), these inputs affect the final

shape of the superposed dependence and its location on the

time scale. The value of B is believed—with regard to its

definition—to be a constant close to 1. However, lower or

higher values of B were reported, namely 0.5!B!1 [64] or

2.3!B!3.2 [25]. The fractional free volume in the glassy

state fgZ0.025 is generally taken as an average universal

constant. This value seems to be also appropriate for the

amorphous phase of crystalline polymers because a fractional

free volume of about 0.03 was reported [35] for amorphous

parts of PP. Similarly, the coefficients of thermal expansion

below and above Tg seem to be only slightly affected by PP

crystallinity [35]. The strain-magnifying factor M defined by

Eq. (13) is an approximation because it corresponds to an

average value calculated under simplified conditions disregard-

ing possible distribution of local strains.

Equally difficult problems are related to Poisson’s ratio of

thermoplastics and to its possible dependencies on strain and/or

time. Recent paper [65] has shown that the time-dependent

Poisson’s ratio n(t) should be determined in the longitudinal

direction in response to a step function of time, i.e. in a stress

relaxation. Respecting this condition, a relatively simple

equation was derived for n(t) of the standard linear solid

(SLS). It was accentuated that the derived equation should not

be used where a ‘good approximation’ to an infinitesimally

small deformation cannot be assumed. A related function

proposed [65] for time-dependent Poisson’s ratio in creep

experiments was later found incorrect [28]. Although Poisson’s

ratio is indispensable for rigorous description of mechanical

properties of polymeric materials, sporadic data occurring in

the literature are often uncertain due to questionable methods

of measurement. Epoxies and rubber-modified epoxies showed
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Fig. 2. Effect of stress on the log D(t) vs. log t dependencies in short-term tensile creep of polypropylene PP6. Applied stress (in MPa): (B) 7.32; (,) 9.76; (6)

10.98; ($) 12.20; (!) 13.42. Factor MZ1.40. (a) Data plotted against real time log t; (b) data plotted against internal time log t* calculated for BZ1, ðfg C

DfTc
ÞZ0:035 and nZ0.43; (c) data plotted against internal time log t* calculated for BZ1, ðfg CDfTc

ÞZ0:025 and nZ0.40; (d) data plotted against internal time

log t* calculated for BZ2.4, ðfg CDfTc
ÞZ0:035 and nZ0.43.
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a virtually linear increase in the volume with tensile strain in

the region of reversible deformation [66], which indicates

a constant n. In creep experiments, polycarbonate [67],

poly(methyl methacrylate) [67] and plasticized epoxies [68]

exhibited a small increase in n with tensile deformation.

Tensile creep of poly(vinyl chloride) indicated the rise of n(3,t)

with time and applied stress in the interval 0.39!n(3,t)!0.45

[66]. However, only constant values of n are usually tabulated

to characterize polymers [1,7,11].

In the first attempt to implement the internal time—tensile

compliance superposition of PPs, we will consider

the following values found in the literature: TgZ266 K [8],

alKagZafvZ3.3!10K4 KK1 [60]. As no specific data are

available for PP, BZ1 will be introduced. For simplicity, also

Poisson’s ratio will be taken as constant, i.e. nZ0.4 [1] or 0.43

[69]. Employing the versatile value fgZ0.025, we obtain ðfgC
DfTc

ÞZ0:025C3:3!10K4 KK1 (296–266 K)y0.035. The

values of M calculated for v1crZv2crZ0.156 and qZ1.8

using Eq. (13) are given in Table 1. Fig. 2(b) shows that the

creep data for different stresses do not superpose, presumably

owing to the inaccuracy (inadequacy) of the available input

data. Thus it is important to see whether the superposition can

be improved through an appropriate adjustment of some inputs.

The criteria for the selection of a suitable set of the inputs can

be defined as follows: (i) selected inputs are in a reasonable

accord with reported (but often questionable) data; (ii) short-

term compliance dependencies obtained for five different

stresses superpose to form a smooth generalized dependence in
the log D(t*) vs. log t* coordinates; (iii) this generalized

dependence coincides with an experimentally determined long-

term dependency.

Inspecting Eq. (8) one can see that an increase in ðfgCDfTc
Þ

can be compensated by a decrease in n; similarly, an increase in

B permits to increase ðfgCDfTc
Þ and n. Thus it seems that

equivalent improvements in the superposition can be attained

via several adjustments of the input parameters. To prove or

disprove this possibility, we have selected BZ1 and

empirically found that the superposed curve is quite smooth

for ðfgCDfTc
ÞZ0:025 and nZ0.4 (Fig. 2(c)). Vice versa, if

reported values ðfgCDfTc
ÞZ0:035 and nZ0.43 [69] are kept

and BZ2.4 is empirically adjusted, a virtually equivalent

generalized dependence is obtained (Fig. 2(d)). However, the

latter value of B may not be realistic so that we will use the first

data set for all studied PPs. Fig. 2(c) and (d) reveal an important

fact that even though the superposition is attained with

different series of inputs, the shape of the generalized curve

and its position on the internal time scale are virtually identical.

In other words, it is not possible to arbitrarily anchor the

generalized curve on the time scale by manipulating with the

inputs, because the superposition is successful only in a

‘reference state,’ i.e. in a certain interval on the t* scale. As the

achieved superposition is obviously very good, our attempts for

further perfection by introducing n(3,t) as a simple function of

time or strain [65] were ineffective.

In Fig. 3(a), five short-term compliance dependencies of

PP5 are superposed to reconfirm the quality of the procedure.



Table 2

Effect of stress on the parameters of Eqs. (10) and (12)

Test MPaa log C* n* R2b log C�
a a* b* R2

a
b

Mosten 58412 (PP1)

STCc
8.41 K0.2811 0.0723 0.9936 K0.2705 0.0528 0.0053 0.9994

12.01 K0.2877 0.0745 0.9925 K0.2625 0.0472 0.0054 0.9997

14.41 K0.3024 0.0784 0.9930 K0.2690 0.0503 0.0045 0.9988

16.81 K0.3112 0.0788 0.9977 K0.2898 0.0640 0.0020 0.9991

19.21 K0.2858 0.0762 0.9996 K0.2828 0.0746 0.0002 0.9996

Average – K0.2936 0.0760 – K0.2749 0.0578 0.0035 –

ESDd – 0.0126 0.0027 – 0.0111 0.0113 0.0029 –

GenCrve – K0.2934 0.0764 0.9948 K0.2813 0.0668 0.0014 0.9962

LTCf
12.01 K0.2984 0.0794 0.9989 K0.2959 0.0779 0.0001 0.9989

Moplen EP548S (PP2)

STC 7.53 K0.1986 0.0731 0.9933 K0.1854 0.0514 0.0056 0.9998

10.04 K0.2107 0.0743 0.9953 K0.1925 0.0541 0.0041 0.9994

12.54 K0.2018 0.0746 0.9971 K0.1791 0.0568 0.0027 0.9994

13.80 K0.1997 0.0738 0.9985 K0.1837 0.0628 0.0015 0.9993

15.05 K0.1866 0.0717 0.9988 K0.1716 0.0628 0.0011 0.9993

Average – K0.1995 0.0735 – K0.1825 0.0576 0.0030 –

ESD – 0.0086 0.0012 – 0.0077 0.0051 0.0019 –

GenCrv – K0.2020 0.0742 0.9960 K0.1945 0.0668 0.0010 0.9965

LTC 10.07 K0.2222 0.0769 0.9988 K0.2177 0.0779 0.0003 0.9988

Moplen HP500H (PP3)

STC 7.23 K0.1557 0.0741 0.9953 K0.1437 0.0544 0.0046 0.9998

9.64 K0.1618 0.0746 0.9972 K0.1480 0.0602 0.0027 0.9991

12.05 K0.1829 0.0773 0.9966 K0.1601 0.0696 0.0027 0.9988

13.26 K0.1542 0.0744 0.9992 K0.1452 0.0678 0.0009 0.9995

14.46 K0.1420 0.0714 0.9996 K0.1397 0.0701 0.0002 0.9997

Average – K0.1593 0.0744 – K0.1473 0.0644 0.0022 –

ESD – 0.0150 0.0021 – 0.0077 0.0069 0.0017 –

GenCrv – K0.1607 0.0745 0.9946 K0.1557 0.0706 0.0006 0.9949

LTC 12.01 K0.1764 0.0756 0.9985 K0.1859 0.0812 K0.0006 0.9987

Moplen C30G (PP4)

STC 8.58 K0.2334 0.0814 0.9934 K0.2170 0.0578 0.0058 0.9998

10.30 K0.2152 0.0813 0.9954 K0.1935 0.0584 0.0044 0.9999

12.26 K0.2085 0.0813 0.9981 K0.1933 0.0691 0.0019 0.9991

13.08 K0.2063 0.0786 0.9989 K0.2081 0.0798 K0.0002 0.9989

15.94 K0.2027 0.0766 0.9996 K0.2063 0.0787 K0.0002 0.9996

Average – K0.2132 0.0798 – K0.2036 0.0696 0.0023 –

ESD – 0.0122 0.0022 – 0.0102 0.0108 0.0027 –

GenCrv – K0.2163 0.0804 0.9938 K0.2197 0.0831 K0.0004 0.9939

LTC 9.81 K0.2027 0.0793 0.9979 K0.2219 0.0887 K0.0009 0.9985

Moplen EPT30R (PP5)

STC 7.82 K0.1530 0.0798 0.9959 K0.1394 0.0609 0.0043 0.9997

9.78 K0.1449 0.0795 0.9958 K0.1277 0.0629 0.0030 0.9982

11.00 K0.1572 0.0808 0.9983 K0.1426 0.0685 0.0019 0.9993

12.23 K0.1528 0.0809 0.9992 K0.1463 0.0763 0.0006 0.9994

13.45 K0.1346 0.0778 0.9997 K0.1388 0.0793 K0.0002 0.9997

Average – K0.1485 0.0798 – K0.1390 0.0696 0.0019 –

ESD – 0.0089 0.0012 – 0.0070 0.0087 0.0018 –

GenCrv – K0.1504 0.0802 0.9975 K0.1461 0.0767 0.0005 0.9976

LTC 7.32 K0.1512 0.0825 0.9989 K0.1531 0.0840 K0.0002 0.9987

Moplen RP210G (PP6)

STC 7.82 K0.0601 0.0756 0.9987 K0.0532 0.0668 0.0019 0.9995

9.76 K0.0651 0.0773 0.9993 K0.0602 0.0738 0.0007 0.9994

10.98 K0.0493 0.0732 0.9993 K0.0571 0.0787 K0.0008 0.9995

12.20 K0.0474 0.0727 0.9994 K0.0599 0.0803 K0.0009 0.9990

13.42 K0.0725 0.0504 0.9994 K0.0659 0.0807 K0.0009 0.9998

Average – K0.0589 0.0698 – K0.0593 0.0761 0.0000 –

ESD – 0.0106 0.0110 – 0.0047 0.0058 0.0012 –

GenCrv – K0.0547 0.0740 0.9987 K0.0628 0.0798 K0.0008 0.9991

LTC 7.38 K0.0736 0.0751 0.9984 K0.0835 0.0822 K0.0008 0.9988

a Tensile stress in MPa.
b Reliability values.
c Short-term creep (100 min).
d Estimated standard deviation.
e Parameters of the generalized compliance curve obtained by fitting the data from five STC.
f Long-term creep (more than 10,000 min).
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Fig. 3. Superposition of the short-term log D(t*) vs. log t* dependencies of

polypropylene PP5, applied stress (in MPa): (B) 7.82; (,) 9.78; (6) 11.00;

($) 12.23; (!) 13.45. Data plotted against internal time log t* calculated for

MZ1.49, BZ1, ðfg CDfTc
ÞZ0:025 and nZ0.40. (a) Data for each stress

approximated by a straight line; (b) all data approximated by one straight line

(cf. Table 2).
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Fig. 4. The log D(t*) vs. log t* dependencies for long-term tensile creep of

studied polypropylenes. Type of PP (Table 1) and applied stress (in MPa): (B)

PP1, 12.01; (,) PP2, 10.07; (6) PP3, 9.64; ($) PP5, 7.32; (!) PP6, 7.38. The

dependence for PP4 (not given) coincides with that for PP3. All data are plotted

against internal time log t* calculated for BZ1, ðfg CDfTc
ÞZ0:025 and nZ

0.40; values M are given in Table 1.
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In parallel, all plotted experimental data are approximated by

one generalized curve in Fig. 3(b). Read-off parameters of Eqs.

(10) and (12) used for fitting both types of experimental

dependencies of six studied PPs are summarized in Table 2

where also the parameters for long-term experiments (lasting

over 10,000 min) are given. Hence it is evident that the fitting

of experimental data by Eq. (10) or Eq. (12) is equally good for

all types of PP. The average values of parameters (resulting

from five short-term measurements) are very close to those

characterizing the corresponding generalized dependence,

which proves correctness of the applied superposition

procedure. The differences between the reliability parameters

R2 and R2
a found for individual generalized dependencies are

virtually negligible, which implies that simpler Eq. (10) is fully

satisfactory for all types of PP. Eq. (12) permits somewhat

better fitting of experimental data but ESD (estimated standard

deviation) for a* and particularly for b* are much higher than

ESD for n*. Very low values of b* evidence only small

deviations from linearity of the log D(t*) vs. log t* dependen-

cies; thus it seems that Eq. (12) solely better reflects possible

irregularities in individual dependencies. The average values of

log C* are systematically somewhat lower than the values of

log C�
a , which can be ascribed to the fact that Eq. (10) almost

ignores possible irregularities in the read-off displacements

shortly after the load imposition. Table 2 also evidences that no

clear-cut dependencies of log C* and n* on stress can be
observed, which is in conformity with the concept that log C*

and n* are the limiting values for creep in the pseudo iso-free

volume state.
4.2. Comparison of short- and long-term compliance

dependencies

Long-term creep measurements are summarized in Fig. 4

and Table 2 indicating some differences between the studied

PPs: while the compliance of PPs rises with decreasing

crystallinity (Table 1), the differences between the slopes n*

of the log D(t*) vs. log t* dependencies are very small except

for PP5, whose slightly higher n* is probably caused by

dispersed rubbery component [58]. Some long-term depen-

dencies seem to be slightly S-shaped, yet they can be plausibly

approximated by Eq. (10). Fig. 5 brings three examples

evidencing that the short-term log D(t*) vs. log t* dependen-

cies at elevated stresses almost perfectly coincide with a

corresponding long-term dependency found for a lower stress.

The parameters of the superposed and experimental long-term

dependencies are in a very good concurrence for all tested PPs

(Table 2), thus indicating that a series of short-term creeps can

be an effective substitute for a long-term measurement. All

these results validate the outlined superposition principle and

the selection of the inputs.

As can be seen, the compliance dependencies determined in

the region of non-linear viscoelasticity can be superposed over

the whole measured time intervals if they are reconstructed for

a constant (initial) free volume. In other words, non-linear

creep behavior becomes apparently linear if the coordinates

log D(t*,s) vs. log t* are introduced. Obviously, such

generalized dependencies cannot be obtained experimentally

because the deformations for Df3/0 would be infinitesimally

small and the time of measurements beyond the laboratory

possibilities. The results of this and our previous papers [3,28–

31] allow to assume that the main reason for the non-linear

tensile creep of materials with Poisson ratio n!0.5 can be

sought in the strain-induced dilatation. Molecular mobility
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Fig. 5. Comparison of the generalized curve obtained through the time-strain superposition of four short-term creeps (STC) with the experimental long-term creep

curve (LTC). Data are plotted against internal time log t* calculated for BZ1, ðfg CDfTc
ÞZ0:025 and nZ0.40; values M are given in Table 1. All data in each figure

approximated by one straight line. Type of PP (Table 1) and applied stresses (in MPa): (a) PP1-STC: (B) 12.01; (,) 14.41; (6) 16.81; ($) 19.21; LTC: (!) 12.01.

(b) PP2-STC: (B) 7.53; (,) 10.04; (6) 12.54; ($) 13.80; LTC: (!) 10.07. (c) PP6-STC: (B) 9.76; (,) 10.98; (6) 12.20; ($) 13.42; LTC: (!) 7.38.
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increased due to strain-induced free volume increment Df3
reduces the material resistance to deformation (i.e. enhances

the compliance), which in turn facilitates further growth of

strain and, consequently, of Df3. This ‘autocatalytic’ process

accounts for a steady acceleration of the running creep.

However, this effect will hardly be detectable in two specific

cases: (1) at very small stresses and produced strains, for which

Df3 remains negligible in comparison with ðfgCDfTc
Þ; (2) as

indicated by Eq. (5), Df3 decreases as n approaches 0.5, which

is typical of materials close to or in the rubber-like state.

The outlined calculations show that if all material

parameters (B, fg, afv, M and n) are kept constant then the

resulting stress-strain relationship is non-linear (compliance

rises with stress). A linear relationship (compliance indepen-

dent of stress) would require that some of the material

parameters spontaneously vary with stress (or strain) in an

exactly predefined way to transform non-linearity into

linearity. As such a ‘compensation law’ would be very

fortuitous (obviously, all other ways of the variations of the

material parameters would preserve non-linearity), the non-

linear viscoelastic behavior should be viewed as general, while

linear behavior as a specific case. The existing concept of the

linearity limit implies that there is a ‘break’ in some material

parameters, which gives rise to markedly differing viscoelastic

properties below and above this limit. With regard to recent

results, such a limit is to be viewed as an arbitrary artificial

limit obviously depending on the accuracy of the used

methods, namely the higher the method accuracy the lower

the observed linearity limit.
4.3. Calculation of the time-dependent real compliance from

the generalized dependency

A practical outcome of the proposed format is that the

generalized log D(t*) vs. log t* dependency can be utilized for

calculating the real log D(t) vs. log t curves for selected

stresses. The procedure employs experimentally found con-

stants log C* and n* (Table 2), which allow to calculate

compliance D(t*) for any selected ‘internal’ time t*. To obtain

the corresponding ‘real’ time t we can modify Eq. (8) by

introducing 3(t)ZsD(t):

log a3 ZKðB=2:303Þ
½ð1K2nÞMsDðtÞ=ðfg CDfTc

Þ�

½ð1K2nÞMsDðtÞC ðfg CDfTc
Þ�

(16)

As Eq. (11) shows that

log t Z log t� C log a3 (17)

a series of data points of the log D(t) vs. log t dependency can

be calculated for a selected constant tensile stress. In Fig. 6,

three examples of the long-term compliance for sZ4.84 or

8.54 or 12.09 MPa are calculated and compared with

experimental curves of PP5. The values of log C* and n*

used in the calculations were extracted from the short-term

creeps (Table 2); the other inputs were identical with those

used in the superposition procedure. The compliance curves

calculated for sZ4.84 and 8.54 MPa fit experimental curve

quite well up to log tZ4.2. For the highest applied stress sZ
12.09 MPa, the resistance to creep is seemingly under-

estimated; the discrepancy can tentatively be attributed to
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Fig. 6. Comparison of long-term experimental (data points) and predicted

compliance curves (full lines) of PP5. Input parameters (Table 2): log C*ZK

0.1485; n*Z0.0798; BZ1; MZ1.49; ðfg CDfTc
ÞZ0:025; nZ0.4. Applied

stress (in MPa) in long-term creep experiments: (B) 4.84; (,) 8.54; (6)

12.09.
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some structure orientation (strain hardening) in the creeping

specimen because the final strain attained 9.8% (it is to be

mentioned that analogous curves calculated by means of

log C�
a , a* and b* are prone to substantial deviations from

reality for long times of creeping, probably owing to

insufficiently accurate values of b*). Fig. 6 demonstrates that

the discussed uncertainties in the input data do not preclude a

fairly good prediction of compliance curves if the input

parameters are identical with those used in the time-strain

superposition.
5. Conclusions

The free-volume theory of viscoelasticity was used to

develop the tensile compliance vs. internal time superposition

in the region of non-linear viscoelastic behavior of poly-

propylenes. The used concept assumes that the non-linearity is

mainly caused by the strain-induced increment of the free

volume, which is typical of materials with Poisson’s ratio

smaller than 0.5. The outlined calculations show that if all

material parameters are kept constant then the resulting stress-

strain relationship is non-linear (compliance rises with stress).

Thus the linearity limit is to be viewed as an arbitrary artificial

limit obviously depending on the accuracy of the used

methods, namely the higher the method accuracy the lower

the observed linearity limit.

The strain-induced additional free volume rises with creep

strain and accounts for shortening of retardation times. To

implement the time-strain superposition of non-linear creep

data, the shift factors are to be calculated a priori point by point

for superposed compliance dependencies. A function continu-

ously rising with the creep strain was derived for the shift factor

along the internal time scale to obtain a generalized creep curve

(over extended time scale) corresponding to a pseudo iso-free-

volume state. The generalized curve can be generated by means

of short-term creep tests at a series of elevated stresses, which

leads to essential time saving. The proposed superposition

procedure was found viable for all studied types of PP and
the validity of the generalized compliance curves was proved

by their coincidence with experimental long-term curves.

The compliance dependencies for the pseudo iso-free-

volume state should be used for the comparison of the creep

behavior of various materials to eliminate the effects of

unequal strain and generated additional free volume. The

results show that the compliance of PPs decreases with their

crystallinity, while the log D(t*) vs. log t* dependency is

virtually linear and its slope (i.e. creep rate) is almost identical

for all PPs. Only rubber-toughened PP does show a slightly

steeper increase in compliance with time, which can be

attributed to the ‘softening’ effect of rubber particles evenly

distributed in the PP matrix. A most practical outcome of the

outlined format is that the generalized log D(t*) vs. log t*

dependency can be used for calculating a long-term log D(t) vs.

log t dependency for any selected stress (in the interval up to

the yield stress) at which no plastic deformation occurs.
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