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The purpose of this work is to propose a decision-making algorithm to select the optimal
composite material for thermally conductive but electrically insulating applications,
such as microelectronic packaging heat sinks, diodes, and other electronic devices. In
particular, an algorithm based on the criteria importance through inter-criteria corre-
lation (CRITIC) and additive ratio assessment (ARAS) methods are used to evaluate
several conflicting attributes. The evaluated samples were acrylonitrile butadiene sty-
rene (ABS) composites filled with 0—30 vol% of boron nitride (BN) particles and prepared
through melt compounding. The performance attributes considered through testing
were heat conductivity, electrical resistivity, density, hardness, and tensile properties
(Young's modulus, tensile strength, and elongation). As expected, the composite con-
taining 30 vol% BN exhibited the highest heat conductivity, electrical resistivity, and
Young's modulus. Meanwhile, unfilled ABS had the highest elongation at break, tensile
strength, and lowest density. With respect to hardness, the 1 vol% BN-loaded composite
proved to be superior. Therefore, the experimental data revealed a considerable
compositional dependence with no obvious trend. The optimal composition was iden-
tified by adopting the CRITIC-ARAS multi-criteria decision-making algorithm, based on
which the 30 vol% BN-containing composite was dominant among all the prepared
samples. A validation through other decision-making techniques was performed to
support the robustness of the proposed technique. Additionally, a sensitivity analysis
was carried out on several weight exchange scenarios to see the stability of the ranking
results.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Recent years have seen an immense development in
communication technology and electronic technology. Due to
the current trend of integration and miniaturization of various
electronic devices, heat dissipation has become a major
challenge in the field of electronic packaging, diodes, energy
storage, and aerospace [1,2]. As a consequence of the intensive
heat accumulation in such products, the proper dissipation of
any excess heat is critical in order to maintain good perfor-
mance, service lifetime, and stable operation. Various 5G
network devices, tablet computers, light-emitting diodes
(LEDs), batteries, and many other devices of everyday life are
involved in this problem [3—5]. Besides the sufficient thermal
management capabilities, there are several parallel re-
quirements against the materials used in the above-
mentioned fields, such as excellent electrical insulation, low
density, decent mechanical properties, and good process-
ability [5,6]. Polymeric materials have been widely used for
such purposes; however, their relatively low intrinsic thermal
conductivity (0.1-0.4 W/mK) makes them ever less appro-
priate, which greatly hinders their application in today's
electronic devices of higher energy density [6]. Currently, the
most common technique to achieve thermally conductive
polymer-based materials is to pair plastics with different
appropriate fillers, thereby fabricating thermally conductive
polymer composites. Potential additives for such composites
can be various metallic, carbonaceous, and ceramic fillers
[2,7]. In this respect, the development of all-organic polymer
composites is an interesting approach, since carbon-based
additives, such as graphene nanoplatelets can effectively
improve the thermal conductivity without compromising the
mechanical and physical properties of the polymer matrix
[8,9]. Carbon-based, and metallic additives, however, only
provide an optimal solution when the electrical insulation is
not a requirement; for electrically insulating purposes
ceramic particles are the optimal choice. Among the ceramics,
a number of candidates have been studied in the past,
including aluminum oxide (Al,Os) [10,11], boron nitride (BN)
[2,12—14], aluminum nitride (AIN) [15—17] and silicon carbide
(SiC) [18]. The resulting properties of such multicomponent
materials are determined by various factors, such as the type
of filler, its shape, concentration, distribution, and the applied
manufacturing process. Among the various ceramic fillers,
boron nitride is the most promising additive owing to its
excellent electrical insulating and thermal conductivity
properties [15].

Kovacs and Suplicz [19] fabricated thermally conductive
composites with a polypropylene (PP) matrix and used talc and
BN particles as fillers to achieve the desired properties. For
compression molded samples, the conductivity of 30 vol% BN-
filled PP increased to 1.14 W/mK compared to the initial 0.25 W/
mK value of neat PP. Talc-filled samples exhibited a consider-
ably lower improvement, peaking at 0.6 W/mK at the same
filler loading. The authors have also shown that the same
composites prepared by injection molding possess much lower
conductivity compared to the compression molded ones, due
to the formation of a shell-core structure within the speci-

mens. Cheewawuttipong et al. [20] prepared PP-based

composites with 15 vol%, 21 vol%, and 29 vol% BN content
using two different BN types; small (1-2 pm) and large
(7—10 pm). The study reported an improving heat conductivity
atincreased BN content with the larger particles being superior
to the smaller ones in this respect. The authors attributed this
to the formation of a conductive network, which was more
easily formed when using larger particles. A maximum con-
ductivity of 2 W/mK was achieved for the samples reinforced
with 30 vol% large BN powder. Zhou et al. [21] studied the
thermal, electrical, and mechanical properties of boron
nitride—filled composites using epoxy as a matrix. The authors
applied a surface treatment on BN with y—glycidoxypropyl-
trimethoxysilane and subsequently mixed it with epoxy. The
thermal conductivity of the polymer increased from 0.22 W/
mK to 1.2 W/mK when filled with 50 wt% pristine BN and
further to 1.34 W/mK when surface treatment was also
applied. Meanwhile, the volume resistivity decreased from
52 x 10™ Q cm to 6 x 10* Q@ cm. Considering the mechanical
properties, it was presented that the addition of BN increases
the modulus of the samples, albeit at the cost of strength and
ductility. Wei et al. [22] investigated the effect of BN nano-
platelets on the mechanical and conductive properties of high-
density polyethylene (HDPE)-based composites containing up
to 15 wt% filler. The Young's modulus of HDPE increased from
741 MPa to 1066 MPa at maximum filler content, which was
also paired with improved yield stress from 23.2 MPa to
25.2 MPa. This latter was ascribed to the outstanding exfolia-
tion of the nanosheets. Interestingly, however, the thermal
conductivity values of the composites were reduced slightly
when compared to the unfilled HPDE. The authors attributed
this drop to the fact that a lower number of thermally
conductive pathways formed due to the high levels of exfoli-
ation and dispersion of BNs.

Acrylonitrile-butadiene-styrene (ABS) is a widely used en-
gineering thermoplastic copolymer. ABS owns a number of
beneficial features, including high impact resistance,
outstanding surface finish, moderate tensile strength, decent
modulus, wear resistance, and chemical resistance [23].
Furthermore, its non-crystalline nature enables a low
shrinkage during melt processing and therefore allows high
dimensional stability. On the other hand, its intrinsically low
thermal conductivity hinders its use in many fields, including
miniaturized electronic devices with high energy density [24].
This shortcoming may be eliminated using fillers that were
studied in the literature with other plastics as described
above.

The reviewed literature increasingly emphasizes that the
selection of components and their relative proportions
generally affect the final properties of the composite mate-
rial. Therefore, designing the correct formulation that pro-
vides the desired results is a common problem for engineers
and decision-makers. In recent years, many scholars have
explored different perspectives on the issue of formulation
optimization. However, in many circumstances, decision-
makers have to deal with the issue of multiple competing
evaluation criteria, further complicating the process of
choosing the best among viable composite material alter-
natives. In dealing with these complex challenges, “multi-
criteria decision-making” (MCDM) is one of the reliable
methods [25,26]. Several studies have investigated the
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ranking of composite materials by evaluating various al-
ternatives. A few of them include VIKOR (vise kriterijumska
optimizacija kompromisno resenje — multi-criteria optimiza-
tion compromise solution), MOORA (multi-objective opti-
mization on the basis of ratio analysis), SAW (simple
additive weighting), multiplicative exponent weighting
(MEW), COPRAS (complex proportional assessment), WAS-
PAS (weighted aggregated sum product assessment), CRITIC
(criteria importance through inter-criteria correlation), and
ARAS (additive ratio assessment) [27—31]. Proposed by
Zavadskas et al. [32], the ARAS method has proven effective
in handling intricate and uncertain decision-making sce-
narios. The effectiveness of the ARAS method can be ach-
ieved by assessing the utility level of each alternative and
considering the outstanding values of the selected criteria.
The ARAS methodology was successfully used in solar water
heater design by Khargotra et al. [33], smartwatch selection
by Giil¢in et al. [34], engine operating parameters optimi-
zation by Balki et al. [35], catering supplier selection by Yan-
Kai Fu [36], and sustainable biomass crop selection by Mis-
hra et al. [37]. Its widespread use and rapid expansion result
from its straightforward approach, both in concept and
implementation. It produces reasonably accurate and
acceptable ranking results among various recommended
alternatives based on their performance concerning speci-
fied criteria [38]. CRITIC, an objective weighting approach
proposed by Diakoulaki et al. [39], utilizes the contrast in-
tensity of criteria to determine their respective weights.
This contrast intensity is evaluated as the standard devia-
tion. Additionally, the approach calculates the contradic-
tions among the criteria by employing the correlation
coefficient [40]. In addition, Aytekin et al. [41], Jov¢i¢ and
Prusa [42], Sultana and Dhar [43], and Ayyldz and Ekinci [44]
reported the use of the integrated CRITIC-ARAS approach in
the food business, selection of logistics providers, milling of
alloys, and in the software development industry,
respectively.

In the present study, hexagonal boron nitride-filled ABS-
based composites were prepared and tested for their thermal
conductivity, electrical resistivity, hardness, tensile mechan-
ical properties, and density. As seen in the results, choosing
the optimal composite was challenging since each composite
performed differently for the investigated properties. There-
fore, an integrated CRITIC-ARAS-based MCDM is proposed to
select the best candidate from the existing composite alter-
natives with the highest satisfaction of the evaluated con-
flicting properties. Sensitivity analysis and a comparison of
the ranking outcomes with other MCDM approaches that are
currently in use have also been performed in order to assess
the robustness and consistency of the proposed CRITIC-ARAS
methodology.

2. Materials and methods
2.1. Materials
ABS pellets of grade Magnum 3453 with a melt flow rate of

15 g/10 min (220 °C/10 kg) were purchased from Trinseo
(Wayne, Pennsylvania, USA). Hexagonal boron nitride powder

Hebofill 482 with an average particle size of 30 pm and a purity
of higher than 98.5% was obtained from Henze BNP (Lauben,
Germany).

2.2. Preparation of the samples

The ABS/BN composites were produced by batchwise melt
compounding using a counter-rotating Haake Polylab mixer
(Vreden, Germany) with a mixing chamber of 50 cm®. The melt
mixing was performed at 190 °C and 60 rpm for a total of
10 min. At first, ABS was added to the mixing chamber, while
BN particles were dosed after 3 min, when the measured
torque was stabilized. A total of seven samples were prepared
with 0, 1, 3, 5, 10, 20 and 30 vol% of BN. The designation code
and the composition of the investigated materials are sum-
marized in Table 1.

The prepared ABS/BN composites were compression mol-
ded into sheets of ~2 mm thickness using a Carver laboratory
press 4122 (Wabash, IN, USA) at a temperature of 190 °C for
5 min. Specimens for characterization were cut out of the
compression molded sheets with a laboratory-scale CNC mill.

2.3. Characterization and testing

The Shore D hardness (criterion C1) of the samples was
measured with a Hildebrand Durometer OS-2 model (Wend-
lingen, Germany) hardness tester. The average values of
hardness were calculated from the results of seven consecu-
tive measurements.

Quasi-static tensile tests were performed using an Instron
5969 (Norwood, MA, USA) electro-mechanical testing machine
following the ISO 527 standard. The tests were carried out at
room temperature on dumbbell-shaped specimens of type
1BA. The machine was equipped with a 10 kN load sensor. The
initial deformation was recorded with a clip-on extensometer
of Instron (Norwood, MA, USA). The crosshead speed was set
to 10 mm/min. The average values of tensile strength (crite-
rion C2), Young's modulus (criterion C3), and elongation at
break (criterion C4) values were calculated from the results of
five consecutive measurements.

The morphology of the fabricated samples was examined
by using a Hitachi S-3400 N (Tokyo, Japan) scanning electron
microscope (SEM) equipped with a secondary electron detec-
tor. Observations were made at an accelerating voltage of
10 kV on the fracture surfaces obtained by the tensile tests.
Prior to the SEM analysis, the surfaces of the specimens were
coated with gold, using a sputtering technique with a Quorum

Table 1 — Designation and formula of the composites by
volume and weight.

Designation ABS (vol%) ABS (wt.%) BN (vol%) BN (wt.%)

ABS 100 100 0 0
1BN 99 98.2 1 1.8
3BN 97 94.7 3 5.3
5BN 95 91.3 5 8.7
10BN 90 83.2 10 16.8
20BN 80 68.8 20 31.2
30BN 70 56.3 30 43.7
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SC7620 apparatus (Laughton, UK) to avoid charging during the
electron beam scanning.

The density of the samples was measured on the basis of
Archimedes’ principle in ethanol at 23 °C using a Gibertini E42
(Modena, Italy) precision digital balance, with a sensitivity of
10%g

The electrical volume resistivity of the ABS/BN samples
was measured by using a Keithley 8009 resistivity test cham-
ber (Ohio, USA) coupled with a Keithley 6517A high-resistance
meter (Ohio, USA).

The thermal conductivity measurements were performed
using a Netzsch LFA 467 HyperFlash (Selb, Germany) laser
flash thermal conductivity meter at a temperature of 25 °C
under an inert N, atmosphere. The flash method is a widely
recognized technique for the determination of thermophys-
ical properties: thermal diffusivity, specific heat, and thermal
conductivity of solid materials.

2.4. Proposed hybrid CRITIC-ARAS approach

Fig. 1 lays out the steps involved in the hybrid CRITIC-ARAS
decision-making process. Part 1 covers the alternatives,
criteria, and decision matrix; Part 2 covers the CRITIC tech-
nique for weighting criteria; Part 3 covers the ARAS method
for ranking; and Part 4 covers rank validation and weight
sensitivity.

2.4.1. Part 1: alternatives, criteria, and decision matrix
For the initialization of any MCDM, firstly the alternatives and
criteria used in the ranking analysis are determined.

Thereafter, a decision matrix is structured using alternatives
and criteria. Consider ‘m’ alternatives and ‘n’ evaluation
criteria a decision matrix (D = [dj],,,,), Which can be struc-
tured as shown in Eq. (1):

d11 d12 dl)‘ dln
dyy  dy 2j 2n
D=[lno=|dy dy . dj .. do @

Qi dm2 ... dpmj ... dm
where d; in the decision matrix indicates the value of ith
alternative in the jth criterion.

2.4.2. Part 2: CRITIC method for weight calculation

The objective weighting technique CRITIC was suggested by
Diakoulaki et al. [39], which can consider correlations between
all specified criteria. The contrast intensities (measured in
terms of criterion standard deviations) were also incorporated
into this procedure and mixed with correlation analysis
weights [39,40]. The CRITIC technique is as follows:

Step 1: Decision matrix normalization as follows (Eq. (2));

dy—dme
max min lf J SNy
d™ — dj
iy = @
d}max 4.

1
gmax _ gmin 1f)enc
] J

where n, represent beneficial and n. represent beneficial non-
beneficial criteria.

4| Decision matrix
normalization

Standard deviation
calculation

Information measure Correlation coefficient
calculation

calculation

—

‘ Construction of decision :E Criteria weight
matrix :: calculation
e e e e e o — I
e N T T T T T T T T T T T T T N e U
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| |
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Fig. 1 — Proposed CRITIC-ARAS algorithm.
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Fig. 2 — Variation of C-1: Shore D hardness; G-2 Tensile strength (a) and C-2: Young's modulus; CG-4: Elongation at break (b).

Fig. 3 — Tensile fracture surface morphology of samples ABS (a, b) 10BN (c, d) and 30BN (e, f) at lower and higher
magnifications.
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Step 2: Criteria standard deviation (¢;) computed as follows

(Ea. (3));

0= %ﬂ 12 §- &) =1, ()

where aj represents the mean of the jth criterion.
Step 3: Determining the correlation coefficient (x;) be-

tween the two criteria say j and k as follows (Eq. (4));

(%5 — dj) (R — )

s

I
JiN

Jjk=1,2,-n (4)

Xjk =

1
2

(Z (% —d)° % (M — E)Z)

=1 i=1

where d; and d; represent the mean of the jth and kth crite-
rion, respectively.
Step 4: Criteria index value (¢;) computed as follows (Eq.

5)s

n
=

Step 5: Computing the CRITIC weights (wj) for each criterion
as shown in Eq. (6);

wj = n(pl ;}-:172,"‘7}’[ (6)
29
J=1

2.4.3. Part 3: ARAS method for ranking

By measuring the degree of utility of each alternative relative
to the ideal best choice, Zavadskas et al. [32] proposed ARAS, a
practical and sophisticated MCDM approach, for making the
best decision. The steps that make up the ARAS method's
process are as follows:

Step 1: Decision matrix formation; the ARAS technique
differs from other MCDM approaches because the decision
matrix has a line of optimal values for each criterion. For m
alternatives and n criteria, the decision matrix is structured as
follows (Eq. (7));

% CS - Density
1.5

e
o

Density [g/cm?]
o
(=)}

03

N \Q‘?ﬁ qp‘?’é @?ﬁ

(@

i dOl dgz ... do) . dOn 1
dy dip ... dy ... dip
dyy  dyp ... dy ... don
D:[dﬁ]mxn: SO 7)
dipn  dp ... dy ... din
L dml dmZ cee dmj cee dmn B

where dy = optimal value of jth criterion. The following
equations (Equation (8)) were used to obtain the jth criterion's
ideal value.

i=1,2,

max d; if jen, )
0j = E m;J:172""n (8)

min d; if jEen,
1

where ny, represent beneficial and n. represent non-beneficial
criteria.
Step 2: Decision matrix normalization as follows (Eq. (9));

L ifjen,
Zi:odff

1

/ dy
Zizol/dij

where ny, represent beneficial and n. represent non-beneficial
criteria.
Step 3: Decision matrix weighted normalization as follows

(Eq. (10));

=Ny xwji=0,1,-

ﬁij:
if jen,

‘m;j=1,2,-n (10)

where Z;; represents the ith alternatives weighted normalized
performance rating with respect to the jth criterion.

Step 4: Optimality function (u;) determination for each
alternative by applying the following formula (Eq. (11)):

n .
=Y Zyi= 0L m )

& C6 - Electrical resistivity
2E+12

= C7 - Heat conductivity
1.5

=~ 1.6E+12 1.2

1.2E+12 0.9

8E+11 0.6

e
[98)

4E+11
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0
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(b) Sample alternatives

Fig. 4 — Variation of C-5: Density (a) and C-6: Electrical resistivity; C-7: Heat conductivity (b).
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Step 5: Computation of utility degree (6;) of alternatives
using the following equation (Eq. (12)).

g="1i=01,--m 12)

Mo
where uy, = optimality function for the optimal criterion ob-
tained from Equation (11). Obviously, the calculated 6; values
vary from 0 to 1 (1 for ug).

Step 6: Alternatives ranking.

The recommended options are listed in ascending order
by 6;, thereafter Equation (13) is used to get the best alter-
native (A”):

A*:{Ai|max Hl-}i:O,l,wm (13)

2.4.4. Part 4: rank validation and weight sensitivity

The suggested CRITIC-ARAS technique was verified by con-
trasting its results with other well-known MCDM strategies
(including SAW, WASPAS, VIKOR, COPRAS, MOORA, and
MEW). As part of the sensitivity study, the criteria weights
found by the CRITIC method were switched, and a new
ranking analysis was done for each change using the ARAS
method. The rank correlation was also used to compare the
alternatives' rankings from different methods and weight-
exchange situations with the suggested methodology's rank-
ings. This was done by calculating the Spearman correlation
coefficient (CC) using Eq. (14) [26].

_q 67
S e (14)

where, A; = rank difference and m = alternatives.

Evaluated properties

3. Results and discussion
3.1. Influence of boron nitride on the evaluated
properties

Figs. 2—4 show the results of the prepared samples in accor-
dance with the chosen criteria. The Shore D hardness (C1) of
the prepared composites is illustrated in Fig. 2a. It exhibits a
rather small reduction as a function of boron nitride content;
however, the hardness values of all samples were within the
deviation range at ~60 Shore D. Similar results of slightly
reducing hardness in the presence of ceramic particles were
already reported by other studies previously for various
polymer composites [45—48]. In the literature, this kind of
behavior is attributed to the fact that at high BN concentra-
tions, a larger and denser filler network of soft BN agglomer-
ates is formed inside the polymer matrix. In such a system,
the basically weak filler-filler interactions become increas-
ingly more dominant relative to the filler-polymer in-
teractions, ultimately leading to a decrease in hardness and
other mechanical properties. The tensile strength (C2) of the
ABS samples also decreased, when BN was introduced, as
shown in Fig. 2a. The neat polymer exhibited a strength of
36 MPa, which gradually dropped with increasing filler con-
tent, bottoming at 22 MPa for sample 30BN. It is suggested that
there is a limited interfacial adhesion between the compo-
nents, which does not enable an effective stress transfer from
the ABS chain molecules to the BN particles [49]. This is also
supported by the reduced elongation at break (C4)
values recorded for the boron nitride-filled composites
compared to the neat ABS matrix (Fig. 2b). Hence, according to

5BN

10BN 20BN 30BN

Composite alternatives

Fig. 5 — Ranking of composite alternatives based on individual criteria.


https://doi.org/10.1016/j.jmrt.2023.09.165
https://doi.org/10.1016/j.jmrt.2023.09.165

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2023;26:8776—-8788

8783

Table 2 — Decision matrix for CRITIC analysis.

Alternatives Cc1 C2 C3 Cc4 C5 Cc6 C7

ABS 60.29 36.08 1739.29 7.22 1.047 1.13 x 10*? 0.189
1BN 60.43 32.39 1919.45 7.16 1.056 1.33 x 10%2 0.194
3BN 60.14 29.05 2083.80 5.72 1.071 1.35 x 10*2 0.200
5BN 59.86 29.35 2379.20 5.45 1.096 1.51 x 10*2 0.275
10BN 60.00 26.65 3089.31 427 1.143 1.59 x 10*? 0.382
20BN 59.57 22.23 4213.42 3.11 1.243 1.60 x 102 0.688
30BN 59.43 22.11 4946.84 2.83 1.352 1.81 x 102 1.273

the literature, the resulting composites exhibit a less ductile
behavior, and the ceramic filler does not concur with strength
enhancement [7].

The Young's modulus (C3) of the fabricated samples can be
seen in Fig. 2b. Neat ABS exhibited a modulus of 1740 MPa,
which increased remarkably when it was paired with BN
powder. Even 1 vol% of BN particles enabled a relative
improvement of over 10%, while the incorporation of 30 vol%
BN resulted in Young's modulus value of 4947 MPa, which is
almost threefold compared to ABS. This gradual increase in
stiffness can be attributed to the rigid characteristics of the
ceramic filler, which hinders the motion of the chain mole-
cules when mechanical load is applied. The reason for the
modulus of the BN-filled samples showing an opposite trend
compared to tensile strength and hardness is the fact that —
unlike the latter properties — modulus is not much influenced
by the interfacial adhesion of the components since it is
measured at relatively low deformation, where there is
insufficient dilation to cause interface separation. Therefore,
the individual properties of the components are much more
vital in this regard [50].

SEM analysis was performed to further evaluate the tensile
performance of the BN-filled ABS samples and presented in
Fig. 3. Fig. 3a and b shows the fractured surface of pure ABS,
which appeared to be smooth with no pores or voids being
present. Also, no signs of plastic deformation can be detected
on the surface, which is in good agreement with the relatively
low elongation at break values measured for all samples.
Fig. 3c and d shows the fractured surface of sample 10BN.
Apparently, at 10 vol% BN loading the dispersion of the filler
particlesis rather good, even though some small agglomerates
can be detected. In the case of individual nanoplatelets
embedded into the ABS matrix, their orientation seems

uniform; they are parallel to the planes of the compression
molded sheets, and as such, barely any contact between them
can be observed. On the other hand, the bundles of BN parti-
cles, the so-called agglomerates appear to be randomly ori-
ented. For the 30BN composite (Fig. 3e and f) the same
conclusions can be drawn, however, the ratio of BN particles
present in the form of agglomerates is much higher in this
case, which also means more randomness in the orientation
of the particles. Besides, agglomerates generally act as failure
sites in polymeric nanocomposites, which explains the major
drop in tensile strength and also supports the claims made
considering the reduction in hardness.

According to Fig. 4a, the density (C5) of the samples grad-
ually increased with growing BN content, which is something
that was expected considering that the density of BN (1.88 g/
cm®) greatly exceeds that of ABS (1.04 g/cm?®). Accordingly, the
lowest density was exhibited by the unfilled polymer, while
the sample 30BN showed the highest one (1.35 g/cm?).

Boron Nitride (BN) is a two-dimensional particle with
excellent chemical, thermal, mechanical, and optical proper-
ties, which make it especially attractive for electronics appli-
cations. BN has a large electrical bandgap between 5.2 and
5.9 eV [51,52] and a small dielectric constant that ranges be-
tween 2 and 4 [53], which are highly advantageous over
metallic fillers and carbon nanomaterials when the electrical
resistivity and dielectric constant of the composite are
concerned.

Electrical resistivity (C6) plays a crucial role in nano-
composites intended for use as thermal interface materials
in electronic devices [54]. In this study, the electrical con-
ductivity of the ABS/BN nanocomposites was investigated
by measuring their volume resistivity, and the correspond-
ing results are illustrated in Fig. 4b. It was observed that the

Table 3 — Results of the CRITIC method.

Alternatives Normalized decision matrix
c1 C2 Cc3 C4 C5 C6 Cc7

ABS 0.8600 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000
1BN 1.0000 0.7359 0.0562 0.9863 0.9705 0.2941 0.0046
3BN 0.7100 0.4968 0.1074 0.6583 0.9213 0.3235 0.0101
5BN 0.4300 0.5183 0.1995 0.5968 0.8393 0.5588 0.0793
10BN 0.5700 0.3250 0.4209 0.3280 0.6852 0.6765 0.1780
20BN 0.1400 0.0086 0.7713 0.0638 0.3574 0.6912 0.4603
30BN 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000
Standard deviation (¢;), index value (#;), and weight ()

9; 0.3667 0.3659 0.3860 0.4058 0.3735 0.3277 0.3700
[ 2.1682 2.1576 3.0651 2.3848 2.2924 2.5810 2.8485
wj 0.1239 0.1233 0.1752 0.1363 0.1310 0.1475 0.1628
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Table 4 — Decision matrix for ARAS analysis.

Alternatives Cc1 C2 C3 Cc4 C5 Cc6 Cc7

A0 60.43 36.08 4946.84 7.22 1.047 1.81 x 10*2 1.273
ABS 60.29 36.08 1739.29 7.22 1.047 1.13 x 10%2 0.189
1BN 60.43 32.39 1919.45 7.16 1.056 1.33 x 10*2 0.194
3BN 60.14 29.05 2083.80 5.72 1.071 1.35 x 10*2 0.200
5BN 59.86 29.35 2379.20 5.45 1.096 1.51 x 10*2 0.275
10BN 60.00 26.65 3089.31 427 1.143 1.59 x 102 0.382
20BN 59.57 22.23 4213.42 3.11 1.243 1.60 x 10*2 0.688
30BN 59.43 22.11 4946.84 2.83 1.352 1.81 x 10*2 1.273

volume resistivity of the ABS/BN nanocomposites was
higher than that of the pristine ABS, especially with the
incorporation of BN as a filler (1.13 x 10 @ cm). Specifically,
when the ABS/BN nanocomposite contained a loading of
30 vol% BN filler, the volume resistivity increased to
1.81 x 10" Q cm, resulting in a notable 60% relative incre-
ment compared to the neat ABS. These findings align with
similar results reported in the scientific literature for ther-
moplastic systems loaded with BN [55—-57].

The thermal conductivity (C7) of the ABS/BN composites
was measured using the laser flash method, which is a
commonly employed technique in scientific research. The
results obtained showed that the thermal conductivity of
the ABS/BN composites increased with an increase in the
loading of BN, as depicted in Fig. 4b. When the BN loading
reached its highest content of 30 vol%, the thermal con-
ductivity reached 1.272 + 0.004 W/mK, representing a sig-
nificant percentage increase (~570%) compared to the
neat ABS, which exhibited a thermal conductivity of
0.189 + 0.003 W/mK. This observed trend is well-
documented in the scientific literature for various polymer
and boron nitride systems [58—60].

In addition, Fig. 5 displays the rankings of the samples
based on their effectiveness for each evaluated property. Fig. 5
clearly shows that variations in BN loading considerably
impact the assessed characteristics. None of the investigated
composites has outperformed the others in terms of all
analyzed properties simultaneously. For instance, pure ABS
excelled in density, elongation at break, and tensile strength.
Nevertheless, it performed poorly regarding electrical re-
sistivity, heat conductivity, and Young's modulus. Composite
1BN has the second lowest electrical resistivity, thermal con-
ductivity, and Young's modulus but the highest hardness,
second-highest elongation at break, and highest tensile
strength. Composite 30BN outperformed all other materials in
terms of electrical resistivity, heat conductivity, and Young's

modulus, but it ranked last in elongation at break, tensile
strength, hardness, and density. Therefore, these sample al-
ternatives were ranked using an integrated CRITIC-ARAS-
based MCDM technique to select the best candidate that
meets on the whole all of these conflicting features. The
evaluated properties, including density, electrical resistivity,
thermal conductivity, tensile mechanical properties, and
hardness were taken as selection criteria. For thermally
conductive composites, the criteria hardness (C1), tensile
strength (C2), Young's modulus (C3), elongation at break (C4),
electrical resistivity (C6), and heat conductivity (C7) were
considered as beneficial (i.e., higher-the-better) features. At
the same time, density (C5) was considered to be non-
beneficial (i.e., the lower-the-better).

3.2. Ranking of the alternatives

3.2.1. CRITIC results

Following the procedure steps described in section 2.4, the
criteria weights were determined using the CRITIC approach.
First, using N;; values in accordance with Eq. (2), the matrix
(given in Table 2) is normalized. The results are shown in
Table 3. The standard deviations (¢;) were then determined
for each criterion using Eq. (3) and are displayed in Table 3 as
well. The index values (®;) were then determined using Eq.
(5), and they are also shown in Table 3. The criteria weights
are then obtained using Eq. (6) as follows: C1; Shore D
hardness = 0.1239, C2; tensile strength = 0.1233, C3; tensile
modulus = 0.1752, C4; elongation at break = 0.1363, C5;
density = 0.1310, C6; electrical resistivity = 0.1475 and C7;
heat conductivity = 0.1628 as listed in Table 3.

3.2.2. Alternatives ranking

The ranking of composite alternatives was evaluated using
the ARAS technique after the weights of different criteria were
calculated. Table 4 displays the findings of the composite

Table 5 — The normalized decision matrix.

Alternatives C1 C2 C3 C4 @5 C6 c7

A0 0.1259 0.1542 0.1954 0.1680 0.1341 0.1492 0.2845
ABS 0.1256 0.1542 0.0687 0.1680 0.1341 0.0932 0.0422
1BN 0.1259 0.1385 0.0758 0.1666 0.1330 0.1096 0.0434
3BN 0.1253 0.1242 0.0823 0.1331 0.1311 0.1113 0.0447
S5BN 0.1247 0.1255 0.0940 0.1268 0.1281 0.1245 0.0615
10BN 0.1250 0.1139 0.1220 0.0993 0.1228 0.1311 0.0854
20BN 0.1241 0.0950 0.1664 0.0724 0.1130 0.1319 0.1538
30BN 0.1238 0.0945 0.1954 0.0658 0.1038 0.1492 0.2845
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Table 6 — The weighted normalized decision matrix.

Alternatives Cc1 C2 C3 Cc4 C5 Cc6 Cc7

AO 0.0156 0.0190 0.0342 0.0229 0.0176 0.0220 0.0463
ABS 0.0156 0.0190 0.0120 0.0229 0.0176 0.0137 0.0069
1BN 0.0156 0.0171 0.0133 0.0227 0.0174 0.0162 0.0071
3BN 0.0155 0.0153 0.0144 0.0181 0.0172 0.0164 0.0073
5BN 0.0154 0.0155 0.0165 0.0173 0.0168 0.0184 0.0100
10BN 0.0155 0.0140 0.0214 0.0135 0.0161 0.0193 0.0139
20BN 0.0154 0.0117 0.0292 0.0099 0.0148 0.0195 0.0250
30BN 0.0153 0.0117 0.0342 0.0090 0.0136 0.0220 0.0463

alternatives for the seven specified performance criteria,
which are summarized in a decision matrix for ARAS analysis.

In Table 4, AO represents the optimal values (dgj) as deter-
mined using Eq. (8). According to Eq. (9), normalization of the
decision matrix was performed and demonstrated in Table 5.
After that, the weighted normalized matrix (as shown in Table
5) is obtained using Eq. (10) and the criteria weights given in
Table 6.

The optimality functions (u;) are determined for each
alternative using Table 6 and Eq. (11) as follows:

ftao =0.0156 + 0.019 + - +0.0176 + --- + 0.0463 = 0.1776
ftaps =0.0156 + 0.019 + - + 0.0176 + --- + 0.0069 = 0.1077
fpy =0.0156 + 0.0171 + -+ + 0.0174 + --- + 0.0071 = 0.1094

tisopy =0.0153 4+ 0.0117 + --- + 0.0136 + --- + 0.0463 = 0.1521

Table 7 displays the calculated alternative g; values.
Finally, using Eq. (12), the utility degree (4;) was determined by
taking the u,, as the best value as follows:

01776
0 =5777¢ =
Oags :% = 0.6064
1BN :% =0.6160
308N = % = 0.8564

The 6; values and associated rank for each alternative are
displayed in Table 7. The utility degree (¢;) for alternative 30BN
was determined to be the highest performing (0.8564), fol-
lowed by alternative 20BN (¢; = 0.7066), and finally alternative

Table 7 — ARAS results.

Alternatives i 0; Rank
Optimum, A0 0.1776 1.0000

ABS 0.1077 0.6064 6
1BN 0.1094 0.6160 5
3BN 0.1042 0.5867 7
5BN 0.1099 0.6188 4
10BN 0.1137 0.6402 3
20BN 0.1255 0.7066 2
30BN 0.1521 0.8564 1

3BN (¢; = 0.5867). Therefore, the formulation 30BN (containing
ABS = 70% and boron nitride = 30% by volume) is considered
the best material candidate for a given application.

3.3. Rank validation and weight sensitivity

3.3.1. Rank validation using other MCDM approaches

It is crucial to ascertain whether the recommended MCDM
model satisfies the literature's requirements before making a
final choice. The ranking outcomes of the suggested ARAS
approach were contrasted with other decision-making ap-
proaches such as SAW, WASPAS, VIKOR, COPRAS, MOORA,
and MEW, as shown in Fig. 6. In the ranks of the alternatives
utilizing the various MCDM techniques demonstrate that
30BN is the most dominant (first-ranked) option. Simulta-
neously, 3BN is the weakest choice, ranking last among all
other employed MCDM techniques except MEW, which re-
places it with ABS. The results revealed that COPRAS, WAS-
PAS, and MOORA did not affect ranking, whilst VIKOR, SAW,
and MEW approaches had a minor effect on ranking. It was
also established, through Eq. (14), whether or not the ranking
outcomes of the recommended MCDM models were signifi-
cantly different from those of the other decision-making tools.
The results reveal a statistical correlation larger than 0.93,
allowing us to conclude that the ranking achieved is credible
and accurate.

3.3.2.  Weight sensitivity analysis

Any MCDM method may produce erroneous or inconsistent
findings under certain conditions, for example, when the
weighting of criteria is modified to accommodate the evolving
viewpoints of the experts. Therefore, it is essential to do a
sensitivity analysis to assess the robustness of the MCDM
results. The effect of exchanging the criteria weights to rank
the alternatives was analyzed in a sensitivity study. There are
seven criteria (C1—C7), allowing for twenty-one possible
swaps. Fig. 7 displays the equivalent ranking of 21 weight
exchanges after being analyzed with the ARAS approach.
Alternative 30BN consistently occupies the top spot in all
weight exchange sets, followed by alternatives 20BN and 10BN
in all exchanges. While 3BN remained the least preferred
alternative among all weight exchange sets. Overall, some
sensitivity was noticed as alternatives ABS, 1BN, and 5BN
switched places; however, because the ultimate aim is to pick
the best option, these changes had minimal influence on the
rank results. Rank sensitivity is further confirmed by the sta-
tistical correlation computed using Eq. (14). For all situations,
the estimated correlation value is more than 0.89, suggesting
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that the ranking results are credible. This demonstrates the
resilience of the integrated CRITIC-ARAS method for selecting
the best alternatives among ABS composite materials
available.

4, Conclusions

In the current study, a decision-assistance method is pro-
posed for thermally conductive and electrically resistive
polymer composite materials based on ABS matrix filled with
0, 1, 3, 5, 10, 20, and 30 vol% of BN particles. The ABS/BN
composites were fabricated by melt compounding in an in-
ternal mixer followed by compression molding. Subsequently,
samples were analyzed for their thermal conductivity, elec-
trical resistivity, density, hardness, and tensile properties.
According to the results there is barely any compositional
dependence of hardness. Whilst, the thermal conductivity,
the electrical resistivity, and Young's modulus improved with
growing BN-content, at the same time the tensile strength,

elongation at break, and density deteriorated. Considering
these inconsistencies in the properties, it was rather difficult
to prioritize the composites according to their performance
and choose the best alternative.

Therefore, through the combination of the CRITIC and
ARAS approaches, a hybrid decision-making technique was
applied. The CRITIC technique was used to determine the
weights of the analyzed attributes, and ARAS was used to
obtain a preference order of the developed composites. Ac-
cording to the adopted techniques, the sample containing
30 vol% BN has optimal properties. A sensitivity study
revealed that the ranking was not considerably influenced by
changing the criteria weights. The obtained ranking was also
validated through other decision-making techniques, and the
results of the proposed CRITIC-ARAS approach proved reliable
based on those.
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