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Abstract: For the first time, a porous mesh of poly(ε-caprolactone) (PCL) was electrospun directly
onto carbon fiber (CF) plies and used to develop novel structural epoxy (EP) composites with electro-
activated self-healing properties. Three samples, i.e., the neat EP/CF composite and two laminates
containing a limited amount of PCL (i.e., 5 wt.% and 10 wt.%), were prepared and characterized from
a microstructural and thermo-mechanical point of view. The introduction of the PCL mesh led to a
reduction in the flexural stress at break (by 17%), of the interlaminar shear strength (by 15%), and
of the interlaminar shear strength (by 39%). The interlaminar fracture toughness of the prepared
laminates was evaluated under mode I, and broken samples were thermally mended at 80 ◦C (i.e.,
above the melting temperature of PCL) by resistive heating generated by a current flow within the
samples through Joule’s effect. It was demonstrated that, thanks to the presence of the electrospun
PCL mesh, the laminate with a PCL of 10 wt.% showed healing efficiency values up to 31%.

Keywords: carbon fibers composites; poly(caprolactone); self-healing

1. Introduction

Polymer composites emerged in the middle of the twentieth century as a promising
class of engineering materials, providing new perspectives for structural applications [1].
The ease of manufacturing, design flexibility, lightweight, high strength, low maintenance,
elevated durability, lack of corrosion, and multifunctionality are examples of additional
assets that can be attributed to this class of materials [2,3]. Despite all these advantages, the
monitoring and prediction of composites life span still represents a major problem [4]. The
typical failure mechanism of fiber-reinforced polymers (FRPs) refers to interfacial delami-
nation and/or matrix cracking [5,6]. The problem with the repairing of FRPs is that most
of the mending methods are time-consuming and/or require a lot of manual interventions.
Moreover, the microcracks growing in the bulk of the composite structures are difficult to
be detected and repaired. For this reason, the interest towards multifunctional FRPs with
self-healing capability has increased in the last years [7].

Generally speaking, the potential advantages of investing in self-healing materials are
the minimization of the repairing costs, the extension of the service life of the components,
and the elimination of the detrimental effects caused by their uncontrolled degradation.
Four concepts must be considered to improve the self-healing efficiency of FRPs: localiza-
tion, time, mobility, and the repairing mechanism [8]. The concept of localization indicates
the position of the damage within the material, while the scale refers to the dimension of
the damage (i.e., surface scratches, microcracks, cuts, fiber debonding, or delamination).
The factor related to temporality is given by the time gap between the damage event, its
repair, and the time needed to heal the material should be the lowest possible. Lastly, the
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analysis of the repairing mechanism is fundamental, and increasing the mobility of the
healing agent inside the damaged area is a key factor to decrease the time necessary to
repair a component. Self-healing materials are generally divided into extrinsic and intrinsic
healing agents. In the intrinsic (also called non-autonomous) systems, the self-healing
properties may not be activated unless they are not triggered externally, while in extrinsic
(also called autonomous) systems, the self-healing feature is activated independently [7].

In extrinsic self-healing composites, an external healing agent is generally confined
within capsules (or in a vascular system) dispersed within the polymer matrix (in most
cases, a thermosetting epoxy resin). When an advancing crack breaks the capsules, the
contained healing agent is released and activated by a catalyst (dispersed in the polymer
matrix) which promotes its polymerization and consequent sealing of the damage [9].
Generally, the healing agent inside the capsules is in liquid form to promote its mobility
when necessary. The flow of the healing agent in the cracked area and the initiation of the
repairing action begins without the requirement of external stimuli [10].

In the intrinsic mechanism, the incorporation of self-healing features is directly related
to the chemistry of the polymer used as healing agent, without the presence of a catalyst,
and the reformation of chemical bonds in the material must be triggered by an external
stimulus such as heat, light, or oxygen [10]. The main advantage of this mechanism over
the extrinsic one relies upon the theoretically infinite possible repairing cycles, provided
that the healing agent is not degraded during the process [11]. From a mechanical and
theoretical point of view, the complete healing of an interface can only be realized if the new
interface has exactly the same features of the bulk material. This means that the interfaces
created by the damage event virtually vanish when the healing mechanism takes place,
thanks to the development of chain entanglements and/or physico-chemical crosslinks as
strong as the polymer matrix [12]. One of the methods reported to add the healing agent
into the composite is by dispersing it as a powder in the epoxy resin [13–17]. This method
has been demonstrated to be effective, but the powders tend to form agglomerates, and
the sample preparation results tend to be quite complex and time-consuming, as well as
the elevated viscosity of the uncured matrix during the processing. In a previous work on
self-healing composites of this group, an impermeable film of healing agent constituted by
a cyclic olefin copolymer (COC) was inserted in the interlaminar region, but the resulting
laminates showed a poor adhesion due to the weak fiber/matrix interface [18].

In order to maintain the pristine viscosity of the uncured resin and a good adhesion
between fibers and matrix in the present work, an electrospun polymeric mesh was directly
deposited on carbon fiber (CF) plies and used as healing agent. Electrospinning technique
can be defined as a process of drawing polymeric fibers from either a polymer solution or
polymer melt. Based on an electro-hydrodynamics phenomenon, electrostatic force is used
to draw the polymer solution into a liquid-jet form to fabricate non-woven fabrics [19]. The
method, however, is affected by several parameters, such as viscosity, operating voltage,
temperature, pressure, and flow rate of the solution. Electrospinning is a versatile technique
for the preparation of micro or nanofibers. Yao et al. [20] produced an electrospun mesh
of PCL to improve the self-healing properties of an epoxy/PCL composite, while Wu
et al. [21] produced hybrid self-healing core-shell nanofibers made by dicyclopentadiene,
enwrapped into polyacrylonitrile. The resulting composites were subjected to an in-
depth microstructural and thermo-mechanical characterization, and the thermal mending
capability of PCL was evaluated by comparing the fracture toughness of virgin and healed
laminates.

On the basis of these considerations, this research aims to develop, for the first time,
carbon fiber reinforced composites in which the self-healing action can be obtained through
the presence of an electrospun PCL mesh directly deposited on CF plies. This polymer was
selected because of its proven healing efficacy in epoxy matrices [22–24]. The insertion
of a porous mesh of PCL could maintain the workability of the epoxy resin and a good
level of interlaminar adhesion, fundamental features to retain the mechanical properties
of the pristine laminates [25]. An in-depth microstructural and thermo-mechanical char-
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acterization of the obtained composites was carried out, and the repair was performed
by an electro-activated Joule heating effect [26]. The efficiency of the healing action was
determined by comparing the interlaminar fracture toughness (GIC) of virgin and repaired
materials.

2. Materials and Methods
2.1. Materials

A bi-component epoxy system, provided by Elantas Europe S.r.l. (Collecchio, Italy),
was used as thermosetting matrix. It was composed by an epoxy resin (Elantech EC 157.1)
and an aminic hardener (Elantech W342), mixed at a ratio of 100:30. Carbon fiber (CF)
unidirectional fabrics (GV-201 U TFX), provided by Angeloni s.r.l. (Venice, Italy), were used
as reinforcement. It was composed of high strength CF plies (surface density of 200 g/m2)
and thermoplastic-coated glass yarns (weft, density of 17 g/m2). The polycaprolactone
(PCL) used in this work was in the form of filaments (PCL99 Naturel), provided by
3D4makers B.V. (Haarlem, The Netherlands) with a diameter of 1.75 mm. According to the
datasheet, it had a density of 1.145 g/cm3 and a molecular weight (Mw) of 84,500 g/mol.

2.2. Samples Preparation
2.2.1. Electrospinning of PCL Fibers

The coating of CF fabrics with PCL was performed through an electrospinning tech-
nique with a lab-made apparatus shown in Figure 1. Polycaprolactone was dissolved into a
solution of dimethylformamide (DMF) and tetrahydrofuran (THF), with a DMF:THF ratio
of 20:80 and 30:70 by weight (see Table 1) [27,28]. The solution was stirred for 4 h at room
temperature until complete dissolution, and it was then mildly ultrasonicated for 10 min in
a Labsonic LBS1 bath (Falc Instruments Srl, Bergamo, Italy), in order to remove small air
bubbles formed during the stirring process, and then transferred in a 10 mL glass syringe.
The syringe containing the polymer solution was fixed on a Harvard apparatus Model 11
(Harvard apparatus Inc., Holliston, MA, USA), equipped with an 18 gauge needle. The
syringe pump apparatus was mounted on an Arduino controlled slider that moved back
and forward at 1 m/min alongside the axis of the collector cylinder. A collector drum
having a diameter of 20 cm rotated at 300 rpm at a distance of 10 cm from the needle tip.
The needle was connected to the positive electrode of a high voltage generator Spellman
SL30 (Spellman, Hauppauge, NY, USA) while the drum collector was connected to the
ground.
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Table 1. Electrospinning variables and their respective levels.

Code Variable Value = −1 Value = +1

x1 polymer concentration (g/mL) 0.1 0.2
x2 DMF concentration (wt.%) 20 30
x3 applied voltage (kV) 15 18
x4 flow rate (mL/min) 0.05 0.1

In order to identify the best parameters to obtain a regular electrospun mesh, a 24 full
factorial design has been used [29]. Four processing variables (i.e., polymer concentration,
DMF concentration in the solution, applied voltage, and flow rate) were varied from a
lower (−1) to an upper (+1) value, while the diameter of the electrospun fibers was taken as
yield (y). These variables and their respective levels are resumed in Table 1. These values
were chosen according to previous literature works [27,30,31].

Analysis of variance (ANOVA) technique was used to evaluate the significance of the
input parameters and their interaction effects on the measured responses, according to a
linear model expressed by Equation (1):

y =
k

∑
i=1

βixi +
k−1

∑
i=1

k

∑
j=i+1

βijxixj + ε (1)

where y is the measured output, xi is the designated input variable, βij is the regressor
coefficient and ε is the error term. The terms with substantial F value (Fisher test), and thus
low probability value (p < 0.05), were selected as the statistically significant parameters [29].

SEM images of the electrospun meshes were taken with a Supra 40 (Carl Zeiss AG,
Oberkochen, Germany) microscope after Pt-Pd sputtering, and the diameter of the obtained
fibers was obtained from SEM micrographs by using an ImageJ 1.51, applying several
algorithms upon image segmentation [32]. After the optimization of the electrospinning
parameters, the deposition on CFs was performed for a certain time, so that the nominal
final concentrations of PCL in the composite laminate was 5 wt.% and 10 wt.%. The time
needed to obtain these concentrations was determined knowing the area of deposition
(equal to 1260 cm2), the rate of deposition (0.1 mL/min) and the concentration of the PCL
solution (0.2 g/mL). Therefore, deposition times equal to 150 and 300 min were selected.
The resulting CF fabrics coated with PCL were cut in square plies having a width of 15 cm
and length of 20 cm, in order to prepare composite laminates.

2.2.2. Preparation of the Composites

Composites were prepared with a hybrid technique, combining hand lay-up and
vacuum-assisted resin transfer molding (VARTM), in order to avoid incomplete permeation
of the resin within the laminates and to minimize the concentration of voids. Hand lay-up
technique involved manually placing and impregnating each fiber fabric with resin using a
brush. The impregnated laminate was inserted into the VARTM system and resin infusion
was performed under vacuum until excess of resin was flown out of the laminate. To
avoid the melting of the electrospun PCL mesh, an optimized curing cycle of 8 h at room
temperature and 40 h at 50 ◦C was performed under a pressure equal to 0.8 MPa, by
using a Carver 2699 hot press (Carver Inc., Wabash, IN, USA). In this way, four-layered
and sixteen-layered laminates of neat epoxy/CF laminates and composites having a PCL
concentration of 5 wt.% and 10 wt.% were prepared. Four-layered laminates were utilized
for flexural tests and electrical resistivity measurements, while sixteen-layered composites
were considered in short beam shear strength and interlaminar fracture toughness tests.
Specimens for interlaminar fracture toughness tests were prepared inserting a polyethylene
terephthalate (PET) film 26 µm thick on one side in the middle section of each sample,
following ASTM D5528 standard [33]. This operation was performed to create a pre-crack,
as required by interlaminar fracture toughness tests. The designation and the nominal
composition of the prepared laminates is reported in Table 2.
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Table 2. List of the prepared laminates.

CF Layers PCL Layers PCL (wt.%) Thickness (mm)

EP-CF-a 4 0 0 1.2
EP-5PCL-CF-a 4 3 5 1.2

EP-10PCL-CF-a 4 3 10 1.3
EP-CF-b 16 0 0 3.3

EP-5PCL-CF-b 16 15 5 5.3
EP-10PCL-CF-b 16 15 10 7.2

2.3. Experimental Techniques
2.3.1. Characterization of the Laminates

SEM analysis was performed to measure the diameter of electrospun PCL fibers on
carbon fibers, to evaluate the thickness of the electrospun layer deposited on CF plies
and to analyze the morphology of PCL domains on the crack propagation surfaces of
virgin and healed samples. All the specimens were metalized with a platinum/palladium
alloy (80:20) coating for 20 s and observed with a Supra 40 microscope (Carl Zeiss AG,
Oberkochen, Germany). The microstructure of the composites was analyzed by using a
Axiophot optical microscope (Carl Zeiss AG, Oberkochen, Germany), coupled with a Leica
DC300 digital camera (Leica Microsystems Ltd., Heerbrugg, Switzerland). The samples
were put in a removable plastic mold and then incorporated in epoxy resin and cured for
24 h at room temperature. Then, the samples were removed from the molds and the surface
was polished by abrasive grinding paper made of silicon carbide with grit polishing sizes
of 240, 800, 1200, and 4000, sequentially, and then polished with 3 µm and 1 µm cloths.
The polishing system LaboPol-5 (Struers, Copenhagen, Denmark) was set at a speed of
200 rpm.

The density of each sample was measured at 23 ◦C by using a ME104 (Metter-Toledo,
Columbus, OH, USA) precision balance, having a sensitivity of 10−4 g. To calculate the
volume fraction of voids, it was necessary to measure the density of the PCL mesh and
carbon fibers. This was done through a AccuPyc 1330 (Micromeritics, Norcross, GA, USA)
helium pycnometer, equipped with a chamber of 1 cm3, performing 30 runs for each
measurement. The composites were weighed in air and in ethanol following ASTM D792
standard [34], and the experimental density (ρexp) was calculated with Equation (2):

ρexp =
wair

wair − weth
(ρeth − ρair) + ρair (2)

where wair and weth are the weight of the samples in air and ethanol, respectively, while ρair
and ρeth are the density, measured in air and ethanol, respectively. The theoretical density
of the composites (ρt) was evaluated with Equation (3):

ρt =
1

wCF
ρCF

+ wM
ρM

+ wPCL
ρPCL

(3)

where wCF, wM, and wPCL are the weight fractions of carbon fibers, matrix (epoxy + hard-
ener) and PCL, respectively, while ρCF, ρM and ρPCL are the density of the constituents. For
all the samples ρCF was equal to 1.78 g/cm3 and ρM to 1.15 g/cm3 while ρPCL was measured
after 150 min of deposition resulting 1.0438 ± 0.0428 g/cm3, and 1.0956 ± 0.0244 g/cm3

after 300 min. Finally, the volume fraction of voids (Vv) was calculated as reported in
Equation (4):

Vv =
ρt − ρexp

ρt
(4)

The evaluation of the weight fraction of the constituents was utilized to confirm the
calculation of the amount of PCL inside the laminates.
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Thermogravimetric analysis was performed to obtain information about the thermal
degradation behavior of the samples. These tests were carried under a nitrogen flow of
100 mL/min, by using a TG50 MT5 (Metter-Toledo, Columbus, OH, USA) thermobalance,
setting a heating rate of 10 ◦C/min from 30 ◦C to 700 ◦C. This test allowed the calculation
of T1% and T5%, i.e., the temperature corresponding to a mass loss of 1% and 5%, of Td, i.e.,
the peak temperature of the mass loss derivative for EP and PCL phases, and of m700, i.e.,
the residual mass at 700 ◦C.

To evaluate the flexural properties of unhealed samples, a three-point flexural test
was performed by using an Instron 5969 (Instron, Norwood, MA, USA) universal testing
machine, equipped with a 50 kN load cell, following ASTM D790 standard. Rectangular
specimens, having a width of about 13 mm and a thickness about 1 mm, were cut from
four layered laminates [35]. According to the standard, a span to depth ratio of 60:1 was
imposed for the flexural modulus measurements, while a ratio of 40:1 was fixed for the
determination of the flexural strength. A crosshead speed corresponding to a strain rate on
the outer surface of the samples equal to 0.01 mm−1 was utilized. At least five specimens
were tested for each composition. Flexural stress and flexural strain were calculated
according to the Equations (5) and (6).

σf = 3PL/2bd2 (5)

where: σ = stress in the outer fibers at midpoint, MPa; P = load at a given point on the
load-deflection curve, N; L = support span, mm; b = width of beam tested, mm; d = depth
of beam tested, mm.

ε f = 6Dd/L2 (6)

where: εf = strain in the outer surface, mm/mm; D = maximum deflection of the center of
the beam, mm; L = support span, mm; d = depth, mm.

Evaluation of interlaminar shear strength (ILSS) of the prepared composites was
performed through short beam shear strength tests, following ASTM D2344 standard [36].
An Instron 5969 (Instron, Norwood, MA, USA) universal testing machine, equipped with a
50 kN load cell, was utilized imposing a crosshead speed of 1 mm/min. Specimens were
cut in a way that their length and width were 6 and 2 times their thickness, respectively. At
least five specimens were tested for each composition. The ILSS was calculated according
to Equation (7):

ILSS = 0.75
Pmax

b h
(7)

where Pmax is the maximum load, b and h are the width and thickness of the specimens,
respectively.

The fracture behavior of the laminates was evaluated through mode I interlaminar
fracture toughness tests, according to ASTM D5528 standard [33]. An Instron® 5969
universal testing machine, equipped with a 50 kN load cell, was utilized to test double
cantilever beam (DCB) specimens, 150 mm long and 23 mm wide, cut from 16 layered
samples.

The tests were performed imposing a crosshead speed of 2.5 mm/min, and at least
five specimens were tested for each composition. Two loading blocks were bonded to the
specimen 50 mm far from the starting crack tip. In order to monitor the crack advancement
during the test, a digital webcam B910HD (Logitech, Lausanne, Switzerland) was utilized.
To measure the crack propagation, samples were colored in white and a graduated scale of
70 mm with 2 mm accuracy was drawn on the lateral side of the specimens. In this way, it
was possible to estimate the crack length (a) at each value of stress and strain. The mode I
interlaminar fracture toughness (GI) was then calculated by using the Equation (8):

GI =
3 P δ

2 b (a + |∆|) (8)
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where P is the applied load, δ is the crack opening displacement, b is the thickness of the
sample and ∆ is a corrective factor. According to the ASTM D5528 standard, this corrective
factor may be determined experimentally by generating a least squares plot of the cube
root of compliance (C1/3) as a function of delamination length (a) (Figure 2).
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The interlaminar fracture toughness of both virgin and healed samples was evaluated
considering the point of deviation from linearity (NL), where the load-displacement curve
starts to deviate from linearity. In this way, it was possible to evaluate the interlaminar
fracture toughness of virgin samples (GIv). Broken specimens were then healed according
to the procedure reported in Paragraph 2.3.2 and tested again, to obtain the interlaminar
fracture toughness of healed samples (GIh). The healing efficiency (ηGI ) was evaluated
using the expression reported in Equation (9):

ηGI =
GIh
GIv
·100 (9)

2.3.2. Healing Process of the Composites

The effectiveness of the healing through Joule heating effect is strongly dependent on
the resistivity of samples. For this reason, resistivity measurements were performed on
the prepared composites by adopting a four-probe configuration. Rectangular specimens
having a length 40 mm and a width 13 mm were cut from four layered laminates, and
the lateral side of each sample was covered with silver paint, to improve the conductivity
of the surfaces in contact with the testing electrodes [37,38].The experimental setup was
composed by a DC electricity generator IPS 303DD (ISO-TECH Kunststoff GmbH, Ahaus,
Germany) and two digital multimeters IDM 67 (ISO-TECH Kunststoff GmbH, Ahaus,
Germany). The current and voltage passing through the samples were recorded at selected
output voltages equal to 0.1, 0.2, 0.3, 0.4, and 0.5 V. At least five specimens were tested
for each composition. An important parameter to consider in these measurements was
the pressure applied on the specimens. In fact, the electrical resistivity is influenced by
the pressure: compression stresses in the through-thickness direction produce a decrease
in the electrical resistivity. On the other hand, a compression stress in the fiber direction
produces an increase in the electrical resistivity [39,40]. A compressive force to the mobile
electrode was applied by means of an apparatus that transformed an applied torque into a
translational force. This was done both to hold the sample during the test and to ensure
that the same compression force was always applied, setting the minimum applicable
tightening torque of 0.1 cNm. After the records of voltage and the current passing through
the samples, the four-point resistivity (ρ) was evaluated using the Equation (10):

ρ =
V w h

I l′ (10)
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where V is the voltage, w is the width of the sample, h is the thickness of the sample, I is
the current flowing through the sample, and l′ is the distance between the contact points of
the voltmeter.

As reported in the introductive section, the Joule heating mechanism was adopted to
promote the self-healing of the laminates. The lab-made self-healing device was composed
of two steel electrodes covered with copper plates, to enhance their electrical conductivity,
while the current was applied through electrical terminals. A layer of PET was inserted
between each copper plate and steel, to decrease the electrical losses through the steel
supports converging the current inside the tested specimen. One electrode was fixed, while
the other one was free to move in order to close the sample between them. The pressure
applied to the lateral surface of the sample (PL) was 180 kPa, calculated knowing that the
applied torque was equal to 0.1 cNm. According to a previous paper of our group [18],
the repairing pressure (PR) applied to close the crack was set equal to 500 kPa. A piece of
glass-ceramic was inserted between each side of the vice’s shoulders and the specimen to
minimize heat losses through the steel vice. The specimen was separated from the glass-
ceramic through a polytetrafluoroethylene (PTFE) sheet, to ease the detachment of the
sample. Before inserting the sample in the lab-made device, as in the electrical resistivity
measurements, the lateral surfaces of specimens were covered with silver paint to increase
the electrical conductivity [38]. A schematic drawing of the repairing device is shown in
Figure 3.
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Figure 3. Schematic drawing of the Joule heating repairing device.

A 6674A DC (Agilent Technologies, Inc., Santa Clara, CA, USA) generator was used to
apply voltage and current to the specimens. The voltage and the current were manually set
to obtain a temperature around 80 ◦C on the crack surface, kept for 30 min, as suggested
in literature for similar systems [22]. During the healing process, the temperature was
monitored by using an infrared thermal camera E6 (FLIR Systems S.r.l., Limbiate, Italy). A
representative image showing the temperature profile captured with the thermal camera
during the healing of the EP-10PCL-CF-b sample is represented in Figure 4. It can be
seen that during the healing process the sample presents higher temperature near the
contact point with the electrodes (90 ◦C), while on the central zone the temperature is
slightly higher than 80 ◦C. A variability lower than 10 ◦C was considered acceptable, also
considering the difficulty of maintaining a homogeneous temperature profile during the
healing process.
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Figure 4. Top view obtained with thermal camera of the EP-CF-b sample during the repairing
process.

3. Results and Discussions
3.1. Characterization of PCL Electrospun Meshes

Electrospun PCL webs were produced according to electrospinning parameters re-
ported in Table 3, and in Figure 5a–d some representative SEM micrographs of the obtained
meshes are reported.

Table 3. Experimental trials for the optimization of electrospinning process parameters.

Trial Polymer Concentration
in Solution [g/mL]

DMF
Concentration
in Solution [%]

Applied
Voltage [kV]

Solution Flow
Rate [mL/min]

Diameter of
the Fibers [µm]

Microstructural
Defects

1 0.1 20 15 0.05 0.11 ± 0.04 Beads
2 0.1 30 15 0.05 0.09 ± 0.04 Beads
3 0.1 20 18 0.05 0.11 ± 0.02 Beads
4 0.1 30 18 0.05 0.09 ± 0.04 Beads
5 0.1 20 15 0.10 0.19 ± 0.06 Beads
6 0.1 30 15 0.10 0.12 ± 0.04 Beads
7 0.1 20 18 0.10 0.16 ± 0.06 Beads
8 0.1 30 18 0.10 0.12 ± 0.06 Beads
9 0.2 20 15 0.05 0.35 ± 0.11 -
10 0.2 30 15 0.05 0.33 ± 0.13 -
11 0.2 20 18 0.05 0.31 ± 0.12 -
12 0.2 30 18 0.05 0.37 ± 0.15 -
13 0.2 20 15 0.10 0.33 ± 0.12 -
14 0.2 30 15 0.10 0.35 ± 0.12 -
15 0.2 20 18 0.10 0.38 ± 0.14 -
16 0.2 30 18 0.10 0.39 ± 0.19 -

In Figure 5a,b it is possible to notice the presence of a large number of beads, which
is one of the most common defects encountered in the electrospinning process [41]. In
particular, these two images are related to samples produced with a lower polymer concen-
tration. Micrographs of meshes prepared with a higher polymer concentration, represented
in Figure 5c,d, show the presence of fibers with a uniform morphology and without
beads. Comparing the morphology of the fibers for two different solution concentrations
(Figure 5a,b vs. Figure 5c,d) it is possible to observe how a tailored polymer concentra-
tion in the spinning solution can lead to fibers having a good homogeneity and without
beads. Performing the electrospinning process with these working parameters allows the
preparation of fibers with stable, predictable, and optimized features [42]. Fibers spun
from a solution with a lower polymer concentration are characterized by smaller diameters
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(0.11–0.12 µm, see Figure 5a,b), while fibers produced with a higher concentration have a
mean size in the range 0.35–0.39 µm, as shown in Figure 5c,d.
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(see Table 3 for the definition of the process parameters).

Mean diameter of the obtained fibers is summarized in Table 3, while the trend of
the fiber size as a function of the process parameters is graphically represented in Figure 6.
According to ANOVA, polymer concentration in the solution is the main variable that
affects the fiber size, with a p-value lower than 10−5. Increasing the PCL concentration
in the solution leads to an increase in the mean diameter of the fibers and to a widening
of the statistical distribution, as already reported in literature [43]. An enhancement of
the polymer concentration corresponds to an increase in the viscosity of the solution,
hence the electrical charges that initiate the spinning could be insufficient to stretch the
polymer solution to a lower fiber diameter. As already seen in Figure 5a,b, a low polymer
concentration is also responsible of the formation of beads, due to the fragmentation of the
entangled polymer chains before reaching the collector [44]. This effect can be suppressed
by increasing the polymer concentration above a certain critical level. In these conditions,
chain entanglements overcome the surface tension of the solution and lead to the formation
of uniform and bead-less electrospun nanofibers [45].
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Fiber diameter is also significantly affected by the flow rate of the solution (p-value <
0.05), although to a lesser extent with respect to the polymer concentration. The coupled
effect of polymer concentration and DMF content slightly affects the diameter of the
fibers (p-value ~ 0.05), due to the possible interaction between solution viscosity and its
electrical charge density. However, the increased electrical charge density given by the
increase in DMF content is hindered at elevated polymer concentration by the increased
viscosity. Applied voltage does not substantially affect the diameter of the fibers, at least
in the interval from 15 kV to 18 kV. After this preliminary study, the combination of
electrospinning parameters selected to coat the CF fabrics is related to trial 16, performed
utilizing a polymer concentration of 0.2 g/mL, a DMF amount of 30%, an applied voltage
of 18 kV and a flow rate of 0.1 mL/min (see Table 3). In this way, it is possible to obtain a
uniform and beads-free web as well as a rather elevated productivity.

Electrospun free-standing PCL meshes, deposited for 150 min and 300 min on CFs
according to the conditions of trial 16, were observed through SEM, in order to measure
their thickness. The thickness of the mesh after 150 min of deposition was 80 ± 4 µm,
while the thickness after 300 min was 162 ± 8 µm, meaning that the thickness of the web is
directly proportional to the time of deposition.

3.2. Characterization of the Composites

Optical microscopy analysis was conducted on unhealed samples to observe the
microstructure of the laminates. In Figure 7a,c,e the optical images of the laminates in
the longitudinal view are reported, while Figure 7b,d,f show the micrographs taken in
the cross-sectional direction. It can be noticed that in the neat laminate (Figure 7a,b) the
epoxy resin presents a smooth surface, while in the other samples the matrix shows a rough
surface due to the presence of the electrospun PCL mesh (Figure 7c–f). This confirms the
effective diffusion of the epoxy resin throughout the composite laminate, i.e., both within
the electrospun mesh and the CF plies.
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Increasing the amount of PCL in the composites, the theoretical density tends to
decrease, as reported in Table 4. This can be due to the fact that the porous mesh of PCL
present in the laminates is not completely impregnated by the epoxy resin. Another reason
could be that increasing the thickness of the composite, the pressure of the vacuum pump is
not enough to squeeze the layers inside the vacuum bag, leaving air trapped in the laminate
during the hand lay-up process. However, the obtained void concentration values can
be acceptable for all the samples, and their mechanical properties should not be strongly
deteriorated. From Table 4, it can be seen that the nominal amount of PCL deposited in the
laminates is very near to the experimental one (wPCL). Moreover, by increasing the PCL
concentration, more epoxy resin is trapped into the mesh, leading to a lower CF content
and deteriorating of the mechanical properties.
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Table 4. Density and relative composition of the prepared laminates.

ρexp

[g/cm3]
ρt

[g/cm3]
wPCL

[wt.%]
wEP

[wt.%]
wCF

[wt.%]
VPCL

[vol.%]
VEP

[vol.%]
VCF

[vol.%]
VV

[vol.%]

EP-CF-a 1.542 ± 0.007 1.563 0.0 45.6 54.4 0.0 55.8 43.2 0.8 ± 0.2
EP-5PCL-CF-a 1.359 ± 0.005 1.399 6.2 43.2 50.6 8.1 51.5 39.2 1.2 ± 0.1

EP-10PCL-CF-a 1.341 ± 0.005 1.393 10.0 42.0 48.0 12.1 48.7 37.6 1.6 ± 0.1

wPCL = weight fraction of PCL; wEP = weight fraction of epoxy resin; wCF = weight fraction of carbon fibers; VPCL = volume fraction of PCL;
VEP = volume fraction of epoxy resin; VCF = volume fraction of carbon fibers; ρexp = experimental density of the composites; ρt = theoretical
density of the composites; VV = volume fraction of voids.

TGA was performed to obtain information about the thermal degradation resistance of
the laminates. The same analysis was performed also on the PCL filament, the thermograms
are reported in Figure 8a,b, while the most important results are collected in Table 5. As
expected, PCL degrades completely, while the laminates degrade only partially, because of
the presence of the reinforcing fibers. Consequently, the residual mass at 700 ◦C decreases
with the PCL amount inside the laminates. As reported in Table 5, a progressive increase in
T1% values with the PCL introduction can be detected, suggesting an improved thermal
degradation resistance. This is due to the fact that the degradation temperature of the epoxy
(378 ◦C) is lower than that of the PCL matrix (418 ◦C), and it is not substantially influenced
by the PCL addition within the laminates. However, the degradation peaks of the epoxy
and PCL phases are partially overlapped, and they cannot be clearly distinguished. This is
also because of the limited PCL amount in the composites.
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Table 5. Results of TGA tests on the prepared laminates and on the PCL filament.

Sample T1% [◦C] T5% [◦C] TdEP [◦C] TdPCL [◦C] m700 [%]

EP-CF-a 181.1 349.1 377.8 - 72.7
EP-5PCL-CF-a 216.2 344.8 378.5 - 53.4
EP-10PCL-CF-a 262.3 344.8 376.1 - 47.4

PCL filament 316.3 382.1 418.1 0.1
T1% = temperature at 1% of weight loss; T5% = temperature at 5% of weight loss; TdEP = temperature associated to
the maximum mass loss rate of epoxy; TdPCL = temperature associated to the maximum mass loss rate of PCL;
m700 = residual mass at 700◦C.

Flexural tests were conducted on the four-layered laminates, and representative stress-
strain curves are represented in Figure 9a. All the samples present a brittle behavior
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and the insertion of PCL in the laminates does not seem to dramatically influence the
mechanical behavior of the composites. The results of flexural tests are summarized in
Table 6. The flexural modulus of EP-5PCL-CF-a and EP-10PCL-CF-a samples are slightly
higher than that of the neat laminate. However, considering the standard deviation values
associated to these measurements, it can be concluded that the prepared laminates have
a similar stiffness. A 12% increase in flexural strength is observed for EP-5PCL-CF-a
sample compared to a neat EP-CF-a composite, while a limited decrease in strength can
be detected for higher PCL amounts (about −17%). The flexural strain at break tends to
slightly decrease with the PCL concentration, but even in this case, the observed drop is
limited (−15%). It can therefore be concluded that the presence of a porous PCL mesh
within the laminates does not significantly affect their flexural properties.
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Table 6. Results of flexural tests and short beam shear strength tests on the prepared laminates.

Flexural Modulus
[GPa]

Flexural Strength
[MPa]

Flexural Strain at
Break [%] Pm [N] ILSS [MPa]

EP-CF 60.8 ± 3.4 621.4 ± 72.3 1.3 ± 0.1 2016 ±139 67.0 ± 3.7
EP-5PCL-CF 66.1 ± 3.4 698.4 ± 37.3 1.3 ± 0.2 4342 ± 155 50.9 ± 1.5
EP-10PCL-CF 65.0 ± 2.7 512.1 ± 34.7 1.1 ± 0.1 5073 ± 146 40.6 ± 1.3

Short beam shear (SBS) test was performed to evaluate the interlaminar adhesion
degree in the prepared laminates. Representative load-displacement curves are reported
in Figure 9b, while the most important results are summarized in Table 6. Thanks to
the higher thickness, the composites with PCL present considerably higher Pm values.
However, the ILSS value decreases with the PCL amount, and the EP-10PCL-CF-b has
an ILSS equal to the 60% of that shown by the EP-CF-b composite. It can therefore be
concluded that the insertion of a limited amount of PCL in the laminates leads to a decrease
in the interlaminar adhesion, but it is important to underline that the observed drop is
not dramatic if compared with that observed in our previous work [18]. In that paper,
a decrease in the ILSS of about 70%, with respect to the neat laminate, was observed,
introducing the healing agent in the form of thin films. This can also explain why the
failure properties of the laminates in flexural conditions are not dramatically affected by
the PCL insertion.
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3.3. Evaluation of the Healing Efficiency

The voltage-current relationship for each sample was investigated by carrying out
resistivity measurements. A linear trend was noticed between the voltage and current
(not shown for the sake of brevity), keeping the increase in temperature as low as possible
by quickly registering the values of voltage and current. In fact, it is well known that,
for these materials, the resistivity increases with the temperature. As shown in Table 7,
the mean value of the resistivity tends to slightly decrease with the PCL concentration,
but, considering the standard deviation values, it can be concluded that the PCL addition
does not strongly affect the resistivity of the samples, allowing the application of the Joule
heating effect as a repairing mechanism. This result could be expected, since carbon fibers
are the main component of the laminates (even if CF content decreases with the PCL
concentration), and they have much higher electrical conductivity (~105 S/m) than epoxy
resin (~10−15 S/m) and PCL (~10−10 S/m) [46,47].

Table 7. Electrical resistivity of the prepared laminates.

Electrical Resistivity [Ω mm]

EP-CF-a 0.065 ± 0.014
EP-5PCL-CF-a 0.052 ± 0.017

EP-10PCL-CF-a 0.051 ± 0.012

For the evaluation of the fracture behavior of the prepared laminates, interlaminar
fracture toughness tests were performed on virgin and healed samples (see Figure 10a,b)
while their representative GI values, corresponding to delamination length for each sample,
are shown as a delamination resistance curve (R curve) in Figure 10c,d. In Figure 10a,
representative load-displacement curves of unhealed laminates are reported. It can be
seen that each sample exhibits a brittle behavior, and each load drop corresponds to the
propagation of the crack. It can be seen from Table 8 that the GI values of EP-5PCL-CF-b
and EP-10PCL-CF-b samples are 25% higher than that of the neat laminate. The increase in
GI due to the presence of PCL was also observed in a previous paper on PCL nanofibers
within a PA66 matrix [48]. It can be hypothesized that the presence of a relatively soft PCL
mesh could lead to a nanofibers bridging effect across the crack-plane, contributing to an
increased toughness in the laminates [49].

After the thermal mending process, each specimen was tested again in the same
conditions to evaluate the healing efficiency. The fracture behavior is more ductile than that
displayed by unhealed samples, as shown in Figure 10b. This could be attributed to the
presence of a diffused thermoplastic PCL phase in the crack propagation surface. Looking
at the delamination resistance curves (shown in Figure 10c,d), it can be seen that the sample
EP-CF-b is not significantly repaired, since the maximum sustained load is 10 N (about 85%
lower than that of the virgin specimen). On the contrary, the maximum load sustained by
the healed EP-5PCL-CF-b and EP-10PCL-CF-b samples is almost halved with respect to the
corresponding virgin composites. This confirms the partial mending of the laminates due
to the presence of the PCL phase. The numerical results of these tests in terms of maximum
load (PMAX), GI calculated at NL point (GI

NL) and the healing efficiency (ρNL
GI

) are reported
in Table 8.
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Table 8. Results of the mode I interlaminar fracture toughness tests on the virgin and healed laminates.

Sample PMAX [N] GI
NL [kJ/m2] Healing Efficiency [%]

Virgin Healed Virgin Healed ηNL
GI

EP-CF-b 69.7 ± 3.6 10.8 ± 0.8 0.78 ± 0.01 0.01 ± 0.01 0.4 ± 0.2
EP-5PCL-CF-b 123.7 ± 6.5 51.1 ± 9.3 0.97 ± 0.12 0.15 ± 0.04 14.8 ± 4.4
EP-10PCL-CF-b 150.2 ± 15.7 76.4 ± 26.9 0.98 ± 0.05 0.31 ± 0.08 31.5 ± 8.8

As expected, the healing efficiency in EP-CF-b sample is almost zero. On the other
hand, healing efficiency values of EP-5PCL-CF-b and EP-10PCL-CF-b samples are 15%
and 32%, respectively. SEM micrographs were taken on the crack propagation surfaces of
virgin and healed samples to analyze the morphology of the PCL mesh before and after
the mending process. This comparison is reported in Figure 11a–f. As expected, no visual
changes can be observed in the EP-CF-b sample after the healing process, as visible in
Figure 11a,b. On the contrary, in EP-5PCL-CF-b and EP-10PCL-CF-b virgin samples the
PCL mesh is still visible (Figure 11c–e), while in the healed ones the PCL nanofibers web is
replaced by a molten layer of PCL (Figure 11d–f). This structure is the result of the PCL
melting and flow on the damaged area during the mending process, meaning that the
selected repairing time and temperature conditions are suitable to activate the mending of
the samples.
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In order to evaluate the real extent of the innovation related to the introduction of an
electrospun PCL mesh as healing material, it could be important to compare the healing
efficiency values obtained in the present work with those reported in literature for similar
systems. In Table 9 the details of the papers reported in literature on the self-healing
behavior of epoxy/PCL systems (with or without the presence of reinforcing fibers) are
summarized, while in Figure 12, the healing efficiency values are represented as a function
of the PCL concentration. Even if the PCL concentration utilized in the present study
was rather small if compared to that considered in the other papers, the healing efficiency
values obtained in this work are considerable, especially with a PCL content of 10 wt.%.
The physical structure of an electrospun mesh allows both an optimal flow of the healing
agent in the cracks and the diffusion of the epoxy resin inside the mesh. Moreover, the
flexural properties of the laminates with the electrospun mesh are comparable with those of
the neat laminates, and only a slight decrease in the ILSS can be detected. Electrospinning
technique introduces also processability advantages, as the avoidance of the viscosity
increase in the uncured resin due to the introduction of thermoplastic healing particles,
present in many self-healing composite systems. It can therefore be concluded that the
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electrospinning technique can be a suitable process to produce meshes able to impart
self-healing properties to structural composites.

Table 9. Comparison of healing efficiency values obtained in literature papers on epoxy/PCL matrices (with or without the
presence of fibers).

Code Composite PCL Content
[%wt] Mending Process Healing Parameters Healing

Efficiency [%] Ref.

a EP/PCL/CF 5.4 30 min at 80 ◦C Max load in
delamination test 43 ± 7 This work

b EP/PCL/CF 9.9 30 min at 80 ◦C Max load in
delamination test 50 ± 7 This work

c EP/PCL blend 12.5 30 min at 80 ◦C Max load in compact
tension test 2 ± 1 [22]

d EP/PCL
electrospun 15.0 10 min at 80 ◦C Max load in tensile test 45 ± 1 [20]

e EP/PCL blend 20.0 30 min at 80 ◦C Max load in quasi
static test 18 ± 5 [50]

f EP/PCL blend 20.0 30 min at 80 ◦C Fracture toughness in
impact test 27 ± 6 [50]

g EP/PCL blend 22.2 30 min at 150 ◦C

Fracture toughness in
tapered double
cantilever beam

(TDCB) test

70 ± 25 [14]

h Epoxy/SMP/PCL 23.3 30 min at 84 ◦C
Max load in single

edge notched bending
(SENB) test

19 ± 1 [51]

i EP/PCL blend 25.0 30 min at 80 ◦C Max load in compact
tension test 11 ± 1 [22]

l EP/PCL blend 37.5 30 min at 80 ◦C Max load in compact
tension test 45 ± 4 [22]

m EP/PCL blend 50.0 30 min at 80 ◦C Max load in compact
tension test 62 ± 15 [22]
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4. Conclusions

In this work, a porous mesh of PCL was produced through electrospinning and directly
deposited on unidirectional carbon fiber fabrics, to create a multifunctional laminate with
self-healing properties. At this aim, neat epoxy/CF laminates and composites with a
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nominal PCL concentration of 5 wt.% and 10 wt.% were prepared. The maximum void
concentration inside the laminates was about 3%, confirming the successful infusion of
the resin within the mesh. The introduction of an electrospun PCL layer tended to slightly
decrease the failure properties of the laminates under flexural conditions, but an acceptable
level of interlaminar adhesion was maintained even at elevated PCL amounts. An electro-
activated mending process was utilized to repair the broken specimens, heating them and
applying an electrical voltage. GI values of the laminates were measured before and after
the mending process, and a healing efficiency up to 32% was obtained with a PCL amount
of 10 wt.%, thanks to the effective diffusion of the molten PCL layer within the fracture
zone. The possibility of partially healing composite laminates was therefore demonstrated
by introducing a very limited PCL amount through electrospinning, while retaining their
processability and without substantially impairing their interlaminar resistance.
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