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A predictive scheme is proposed for the simultaneous
calculation of the modulus and yield (or tensile) strength
of ternary polymer systems. According to the continuity
or discontinuity of constituting phases, the scheme
combines in two steps the models for binary systems:
(i) in the interval of phase duality (co-continuity), a two-
parameter equivalent box model is used along with the
data on the phase continuity rendered by modified
equations of the percolation theory; and (ii) the effects of a
dispersed phase on the mechanical properties of a
continuous phase are treated by using the approach
developed earlier for particulate systems. Simultaneously
predicted values of the modulus and yield (or tensile)
strength of ternary systems are interrelated because they
are calculated by using an identical set of input
parameters characterizing a specific phase structure.
The predictive scheme will allow the experimentalists: (i)
to anticipate selected mechanical properties of envisaged
blends (for presumed phase structures); (ii) by comparing
experimental and theoretical data, to assess to which
percentage the potential of a material has been exploited;
(iii) to analyze the phase structure of prepared ternary
blends; and (iv) to evaluate interfacial adhesion or the
extent of interfacial debonding. The versatility of the
predictive scheme is demonstrated on three examples of

various types of ternary systems. CopyrightÓ 2000 John
Wiley & Sons, Ltd.
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As preparation of polymer blends ranks among the
cost-effective ways of upgrading existing polymers,
it is very desirable to anticipate the values of
physical properties of intended blends, such as
modulus Eb, yield strength Syb, tensile strength Sub
and permeability Pb to gases or vapors. So far
various models predicting mechanical or other
physical properties of particulate composites have
also been frequently used for heterogeneous poly-
mer blends. However, such models [1±3] are not
suitable for polymer blends because (i) they do not
allow for an interval of the co-continuity (duality)
of constituting phases and (ii) they cannot simulta-
neously predict several mechanical (physical)
properties of a blend, thus relating them to a
specific phase structure. We have succeeded in
overcoming these deficiencies by proposing a new
predictive scheme [4±7] based on (i) a two-
parameter equivalent box model (EBM) (Fig. 1)
and (ii) the equations rendered by the percolation
theory [8, 9]. As the EBMs are not ªself-consistentº
models, their adjustable parameters (volume frac-
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tions) have so far been determined a posteriori by
fitting experimental data [3, 10]. However, the
EBMs can be used for the prediction of selected
physical properties of polymer blends if the input
parameters are determined a prioriwith the aid of a
suitable theory or model. The percolation theory [8]
renders a universal equation for the modulus of
two-component heterogeneous isotropic systems
where the contribution of the second component
(phase) is negligible. It has been shown experimen-
tally [6, 9] that the proposed equation plausibly fits
experimental data for glassy plastics/elastomer
blends not only in the vicinity of the percolation
threshold vcr (the critical volume fraction) at which
the glassy polymer assumes phase continuity, but
also over the region vcr< v< 1. So far the predictive
scheme has been successfully used for (i) prediction
of the yield strength of binary polymer blends [4, 7],
(ii) evaluation of the extent of interfacial debonding
in binary polymer blends [5], and (iii) simultaneous
prediction of the modulus, yield (or tensile)
strength and permeability of binary polymer
blends [7, 11].

By using ªtheoreticalº values of the input
parameters (calculated for single-size spheres in a
three-dimensional lattice [8, 12±15]) we can obtain
ªuniversalº dependences of physical properties on
blend composition. Alternatively, if experimental
data are available (e.g. on the modulus and/or
yield strength and/or permeability), vcr of consti-
tuents can be adjusted (by a fitting procedure),
which may be rather different from the theoretical
value being affected by relative melt viscosities of
components, interface energy, mixing equipment
and conditions, phase structure coarsening, etc. In
this way, the proposed scheme becomes a powerful
tool in obtaining quantitative information on the
phase structure of studied blends. As all predicted
properties are interrelated through an identical set
of input parameters, the identification of a phase

structure becomes more trustworthy the more
measured properties of blends can be compared
with their simultaneous prediction, e.g. modulus
and yield (or tensile) strength or modulus and
permeability.

The objective of this paper is to show how the
predictive scheme can be adapted for the predic-
tion of selected mechanical properties of various
types of heterogeneous ternary polymer systems
(consisting of three immiscible or partly miscible
components). A continuing search for cost-effective
materials has stimulated studies of three-compo-
nent blends which provide broader options of
tailoring for a variety of specific purposes. Also, we
have found [16, 17] that mechanical±in particular,
ultimate±properties of ternary blends are superior
to those of binary counterparts. Prediction of the
physical properties of ternary blends is clearly
more difficult than for binary blends for at least two
reasons: (i) phase structure of ternary blends is
more complex and variable; and (ii) the EBM
applied to binary blends has to be extended and/
or combined with other models in a suitable
manner. We will show that the predictive proce-
dure can be implemented in two steps: (i) proper-
ties of a two-component blend (or composite) can
be calculated where one component is continuous,
while the second component is either continuous or
discontinuous; and (ii) this binary system can be
then formally ªmixedº with the third (co-contin-
uous) component to form a three-component
heterogeneous system. We believe that the pro-
posed predictive scheme will allow the experimen-
talists (i) to anticipate selected mechanical
properties of envisaged blends (for presumed
phase structures); by comparing experimental and
theoretical data (ii) to assess to which percentage
the potential of a material has been exploited; (iii) to
analyze the phase structure of prepared ternary
blends; and (iv) to evaluate interfacial adhesion or
the extent of interfacial debonding. The versatility
of the predictive scheme is demonstrated on three
examples of various types of ternary systems.
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At present, there exist various models predicting
individual physical properties of systems consist-
ing of a continuous matrix and one or more
dispersed components, e.g. modulus [2, 10, 18±20],
yield or tensile strength [21±25] and permeability
[26±28]. We can employ such models for polymer
blends in marginal composition intervals in which
the minority components are fully discontinuous.
However, we need models that allow for the
interval of phase duality (co-continuity) delimited
by the critical volume fractions v1cr and v2cr of the
constituents and take into account their interfacial
adhesion. Our predictive scheme for the modulus
and yield (or tensile) strength of such systems
requires implementation of two steps: (i) derivation
of an equation for a considered property in terms of
the EBM; and (ii) calculation of the input para-

FIGURE 1. Equivalent box model for binary blends.

Copyright ã 2000 John Wiley & Sons, Ltd. Polym. Adv. Technol., 11, 75±81 (2000)

76 / KolarÏõÂk et al.



meters (which are identical for all considered
properties) of the EBM by using the percolation
approach introduced earlier [8, 9]. Obviously, the
EBM approach is not applicable if the blend mixing
process accounts for a significant change in the
structure, e.g. in the degree of crystallinity, of a
component or gives rise to a new mechanism, e.g.
multiple crazing of a matrix containing elastomeric
inclusions (thus, impact strength cannot be pre-
dicted by the scheme).

Equivalent Box Model for Systems with Co-
continuous Phases

The well-known parallel and series models [2, 18]
are sometimes incorrectly used as first approxima-
tions of the upper and lower bounds, respectively,
of physical properties of isotropic heterogeneous
materials (cf. ref. 7), such as modulus, permeability,
yield strength and tensile strength. In principle,
phase structure of these materials does not corre-
spond to parallel or series coupling of components,
but more complex models combining both cou-
plings have to be introduced. The EBM in Fig. 1 is a
two-parameter model since of the four volume
fractions vij, only two are independent. The
dimensions of blocks indicate which volume frac-
tions of each constituent can be regarded as
coupled in parallel or in series so that the EBM
response to loading can be equivalent to that of the
modeled system. The fractions of components 1
and 2 coupled in parallel (subscript p) or in series
(subscript s) are interrelated as follows:

vp � v1p � v2p

vs � v1s � v2s

v1 � v1p � v1s

v2 � v2p � v2s

v1 � v2 � vp � vs � 1

9>>>>>>>=>>>>>>>;
�1�

The following equations hold [4±6] for the parallel
and series branches of the EBM:

Epvp � E1v1p � E2v2p �2a�
vs
Es
� v1s

E1
� v2s

E2
�2b�

The resulting modulus of two-component blends is
then given as the sum (Epvp� Esvs):

Eb � E1v1p � E2v2p � vs2

�v1s=E1 � v2s=E2� �3�

As we have shown earlier [6, 29], the blend
modulus is always a monotonic function of the
blend composition because no interfacial debond-
ing is presumed at small strains at which the blend
moduli are routinely measured. It is worth men-
tioning that the permeability of two-component
blends is given [7, 30] by a formally analogous
equation.

A linear stress±strain relationship indispensable

for modulus measurements can be granted for
glassy polymers only at very low strains, typically
below 1%, where perhaps all blends show inter-
facial adhesion sufficient for the transmission of the
acting (very low) stress. At higher strains (usually
4±6%), the applied tensile stress is likely to exceed
the linearity limit and attain the value of yield
strength Sy, thus inducing yielding and plastic
deformation. In our previous papers [4±7], we have
derived the following equation for the yield
strength of polymer blends in terms of the EBM
visualized in Fig. 1:

Syb � Sypvp � Sysvs �

�Sy1v1p � Sy2v2p� � ASy1vs �4�
where Sy1 and Sy2 characterize the parent polymers
and A is inversely proportional to the extent of
interfacial debonding [5]. Two limiting values of
Syb, identified with the lower or upper bound, can
be distinguished by means of eq. (4): (i) Interfacial
adhesion is so poor that complete debonding
occurs between the fractions of constituents
coupled in series (A = 0 at the yield stress);
consequently, the series branch does not contribute
to the resulting yield strength and the lower bound
of Syb is therefore equal to the sum of the
contributions of two parallel elements. (ii) Inter-
facial adhesion is strong enough to transmit the
achieved stress between constituents so that no
debonding appears (A = 1); then the contribution of
the series branch is added to that of the parallel
branch (the effect on Sy1 and Sy2 of slightly different
strain rates in the parallel and series branches is
neglected). However, as two components differing
in the yield strength are coupled in series, the
branch shows yielding at Sy1 or Sy2, whichever is
lower (Sy1< Sy2 is assumed in eq. (4)). For A = 1,
the EBM predicts a monotonic dependence of Syb in
the interval between Sy1 and Sy2; however, as soon
as A< 1, Syb passes through a minimum as a
function of blend composition [4, 5, 30]. With
regard to general experience [2, 23] that formally
identical equations can be used for the yield as well
as tensile strength of isotropic polymer materials,
we have also successfully used [4±7] eq. (4) for Sub
by replacing the yield strengths Sy1 and Sy2 by the
tensile strengths Su1 and Su2, respectively.

Calculation of vij for the EBM employs a
universal percolation formula derived [8, 31] for
the modulus of binary systems with negligible
contribution of one component:

E � E0�vÿ vcr�t �5�
where E0 is a constant, vcr is the critical volume
fraction and t is the critical universal exponent. As
eq. (5) has been shown [6, 9] to plausibly fit the
modulus of model blends with E1� E2 in the range
v1cr< v1< 1, it can be modified to the following
form:
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E1b � E1
v1 ÿ v1cr
1ÿ v1cr

� �t1

�6�

where E1 = E0(1 ÿv1cr)t1 is the modulus of the neat
component 1 and E1b expresses the modulus of a
ªsingle-componentº blend in which the second
component occupies space corresponding to its
volume fraction, but its contribution to the blend
modulus is negligible. As long as E1� E2, the
contribution E2v2p of that part of component 2
which is coupled in parallel and the contribution of
the whole series branch (Fig. 1) to the modulus of
the EBM (eq. (3)) are negligible in comparison with
the contribution E1v1p of component 1.

Consequently, E1v1p (or E2v2p for E2� E1) can
be set equal to the apparent modulus E1b (or E2b):

E1b � E1v1p �7a�
E2b � E2v2p �7b�

To obtain v1p and v2p as functions of the blend
composition, we will combine eqs (6) and (7):

v1p � v1 ÿ v1cr
1ÿ v1cr

� �t1

�8a�

v2p � v2 ÿ v2cr
1ÿ v2cr

� �t2

�8b�

The remaining v1s and v2s can be evaluated by
using eqs (1). Experimental values of t are usually
located between 1.7 and 1.9, which complies well
with the theoretical prediction [8] t = 1.8; the latter
value will be considered in our calculations as a
constant. For discrete domains of spherical form,
the percolation threshold vcr = 0.156 was calculated
[12, 31, 32]. The values of vcr = 0.19� 0.09 were
reported [19] for components in binary blends.

Models for Systems with One Continuous and
One Discontinuous Phase

The effect of particulate fillers on the modulus of
isotropic composites with glassy matrix can be
evaluated by using the Kerner±Nielsen equation
[2, 10, 33]:

Ec � Em
1� AfBfvf
1ÿ PfBfvf

� �
�9�

where Ec is the modulus of the composite, Em is the
modulus of the matrix and vf is the volume fraction
of the filler. The constants Af, Bf, Pf are defined [2]
as follows:

Af = (7ÿ 5�m)/(8ÿ 10�m), where �m is the Pois-
son ratio of the (glassy) matrix;

Bf = (Ef/Emÿ 1)/(Ef/Em� Af), where Ef is the
modulus of the incorporated filler;

Pf = 1� [(1ÿ vfmax)/vfmax] (vf)
2, where vfmax is

the maximum packing fraction of the filler (the

value of vfmax = 0.63 for random close packing of
monodisperse spheres is frequently used [2]).

If the modulus Ei of the dispersed component is
lower than Em, e.g. in rubber-toughened plastics,
then inverted relations should be used [2]:

Es � Em
1ÿ PiBivi
1� AiBivi

� �
�10�

where Es is the modulus of the system and vi is the
volume fraction of the inclusions. The constants Ai,
Bi, Pi are defined [2] as follows:

Ai = (8ÿ 10�m)/(7ÿ 5�m);
Bi = (Em/Eiÿ 1)/(Em/Ei� Ai);

the formulae for Pi and Pf are analogous.

As generally known, the yield strength of
particulate composites Syc is approximately equal
to that of thematrix Sym if the interfacial adhesion is
strong enough. (Detailed calculations based on the
method of final elements show [34] that Syc is
slightly higher than Sym mainly because of reduced
molecular mobility in the interphase adhering to
the filler surface.) In the case of ªzeroº adhesion, Syc
drops with the filler volume fraction following
approximately the formula derived by Smith [21]
and modified by Nicolais and Narkis [23]:

Syc � Sym 1ÿ vf
vfmax

� �2=3
" #

�11�

The same formula holds for glassy matrices with
rubber-like inclusions [10] regardless the adhesion
between components.

FIGURE 2. Effect of the composition of ABS/polyamide 6
(PA6) blends on * tensile modulus Eb, * yield strength Syb
and m| tensile strength Sub (data from ref. 35). Lines
calculated by using ªuniversalº input parameters
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In this paper, we will compare simultaneously
predicted Eb and Syb (and/or Sub) with experi-
mental data for various types of ternary systems in
order to demonstrate the versatility of the proposed
predictive scheme. In Fig. 2, experimental data [35]
on Eb, Syb and Sub are presented for the blends of
ABS and polyamide 6 (PA6). ABS is a two-phase
system (blend) consisting of continuous poly(styr-
ene-co-acrylonitrile) matrix (PSAN) and rubber-like
particles of butadiene. It would be possible to
evaluate the properties of ABS by using eqs (10)
and (11) if the corresponding properties of the two
constituents were given. However, as the volume
fractions of the components as well as the ABS
phase structure are fixed and do not change during
the blend mixing, experimental values of Eb, Syb
and Sub found [35] for ABS can be used directly,
thus eliminating the first step in the predictive
scheme. The second step in predicting the proper-
ties of ABS/PA6 blends is analogous to that used
for binary blends [4, 7, 11]. The curves of Eb and Syb
calculated by using theoretical values
v1cr = v2cr = 0.16 fit experimental data with a plau-
sible accuracy. Sub of blends with 30±60% of PA6 is
somewhat higher than that predicted, while the
inverse relation holds for the blends with 80 and
90% of PA6. Nevertheless, the monotonic depen-
dence of Sub on the blend composition evidences±
according to the EBM prediction [30]±sufficient
interfacial adhesion between ABS and PA6 up to
the blend fracture. Thus, in this case, the predictive

scheme anticipates quite well the experimental
results.

The second example (Fig. 3) presents a ternary
systeÂm [36] where a constant volume fraction (10%)
of glass beads (GB) was added to a fused binary
matrix consisting of varying fractions of polyamide
66 (PA) and polypropylene (PP). Microscopic
analysis [36] has shown that GBs were always

FIGURE 3. Effect of the composition of polypropylene
(PP)/polyamide 66 (PA)/glass beads (GB) blends on tensile
modulus Eb and yield strength Syb (data from ref. 36). Solid
lines calculated by using ªuniversalº input parameters
v1cr = v2cr = 0.16; t1 = t2 = 1.8; dashed lines calculated
with v2cr = 0.30 (the other parameters unchanged).

FIGURE 4. Effect of the composition of polypropylene
(PP)/polyethylene (PE)/ethylene±propylene rubber (EPR)
blends on (a) shear modulus Gb and (b) yield strength Syb.
Experimental data (from ref. 33): mw PP/EPR; PE/EPR;
* PP/PE/EPR. - dependences for binary blends calculated
by using ªuniversalº input parameters v1cr = v2cr = 0.16;
t1 = t2 = 1.8; - - - EPR is presumed to form an interlayer
between PP and PE in ternary blends (the input parameters
as above); -�- EPR is presumed to be evenly distributed in PP
and PE in ternary blends (the input parameters as above).

(b)

(a)

mw
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embedded in the PA component of the blends
despite the fact that PP contained a small percen-
tage of maleic anhydride, which simultaneously
contributed to the adhesion between PP and PA.
The prediction of mechanical properties of the PP/
PA/GB systems requires implementation of two
steps: (i) calculation of respective properties of the
PA (present in a specific blend) reinforced by
added GB; (ii) calculation of properties of the
systems consisting of PP and reinforced PA.

The effect of GBs on the modulus of PA can be
evaluated by using eq. (9) and the following values
for the components [2, 36]: Em = 1.10 GPa; Ef = 70
GPa; �m = 0.35; vfmax = 0.63. As far as the yield
strength is concerned, we can assume [34] Syc = Sm
(owing to sufficient interfacial adhesion) if the
volume fraction of PA in the matrix PA/PP is
higher than 0.1. In the second step, the mixing of
the composite PA/GB with PP is regarded as
analogous to the mixing of polymers. As can be
seen in Fig. 3, the curves of Eb and Syb calculated
under the assumption v1cr = v2cr = 0.16 do not fit the
experimental data well; however, an optimum
description has been found for v1cr = 0.16 and
v2cr = 0.35. A high value of v2cr can be explained
by the fact that GBs markedly increase the melt
viscosity of PA, which then shows a decreased
tendency to phase continuity in the blended system
[1, 37, 38]. Anyway, Fig. 3 documents that Eb and
Syb calculated for the PP/PA/GB systems by using
the outlined procedure can be viewed as a valuable
preliminary information.

The third example (Fig. 4) is concerned with
ternary blends PP/PE/EPR containing a constant
volume fraction v3 = 0.2 of ethylene±propylene
rubber (EPR). It has been shown [39±42] for ternary
systems that the components with the highest and
the lowest surface energy do not go into contact
because their interface would enormously increase
the Gibbs energy of the system related to the
interface. As the surface energy of EPR is higher
than that of PP, but lower than that of PE [33],
ternary blends tend to assume the following phase
structures: if volume fraction v1 of PP or v2 of PE is
small, say lower than 0.2, then particles of the
minority component are surrounded by an EPR
shell and embedded in the majority component; if
v1 and v2 are comparable, then PP and PE are co-
continuous, which, however, means that also EPR
forms a co-continuous phase (as an interlayer).
Microscopic analysis [33] has corroborated the fact
that EPR shows a very strong tendency to separate
PP and PE regardless of their ratio in ternary
blends.

The phase structure of such ternary blends will
change with the blend composition in a rather
complex manner, i.e. various types of phase
structures are likely to coexist. Model calculations
implemented for several presumed phase struc-
tures may be helpful for the phase structure
analysis because the model phase structures can
be expected to correspond to the real ones in the
composition intervals where the calculated curves
fit the experimental data. An extended EBM

suitable for modeling the PP/PE/EPR blends can
be obtained by adding the third element (corre-
sponding to the EPR component) to both parallel
and series branches of the EBM in Fig. 1. Equations
(2) then assume the following form (tensile mod-
ulus E is replaced by shear modulus G):

Gpvp � G1v1p � G2v2p � G3v3p �12a�
vs=Gs � v1s=G1 � v2s=G2 � v3s=G3 �12b�

As the values G3 = 1 MPa and Sy3 = 0.18 MPa are
much lower than G1 = 650 MPa and Sy1 = 36.3 MPa
or G2 = 670 MPa and Sy2 = 28.8 MPa, respectively, it
is quite evident that the contributions G3v3p and
Sy3v3p of the EPR fraction v3p to Gb and Syb,
respectively, are negligible. Moreover, any series
combination of components encompassing an EPR
fraction will display Gs and Sys close to G3 and Sy3,
respectively, so that the contribution to the result-
ing Gb and Syb will be negligible (regardless of the
adhesion at the formed interfaces and the exact
value of v3s). Thus, the mechanical properties of the
PP/PE/EPR blends are mainly controlled by the
fractions v1p and v2p coupled in parallel.

In Fig. 4, the data are given for the ternary
blends along with those for binary blends PP/EPR
and PE/EPR. It is shown that Gb and Syb of the
binary blends are well described by eqs (3) and (4),
respectively, if theoretical value 0.16 is used for all
critical volume fractions. Model calculations of Gb

and Syb for ternary blends have been attempted
under the following assumptions: (i) PP and PE are
mixed as a binary system and EPR is considered as
an ªinterlayerº which does not affect v1p and v2p
(such a phase structure is in accord with previous
discussion); and (ii) EPR is evenly distributed
throughout the blend, i.e. both PP and PE contain
20% of EPR; binary blends PP/EPR and PE/EPR
are then mixed in various proportions to form
ternary blends. As can be seen in Fig. 4, the second
assumption leads to unrealistic (high) values of Gb

and Syb; as G1 and G2 or Sy1 and Sy2 are rather
similar, the calculated dependences are very flat.
On the other hand, the values of Syb calculated
under the first assumption fit experimental data
very well (Fig. 4b). As far as the blend modulus is
concerned, the experimental data are somewhat
higher than the model ones, but the dependences
are parallel (Fig. 4a). Obviously, EPR entrapped in
PP or PE, i.e. not located in the interlayer, will
account for an increase in Gb or Syb. In this way, we
can explain the experimental data located between
the curves corresponding to the model phase
structures. Nonetheless we can conclude that the
model with an EPR interlayer between PP and PE
fits available experimental data quite well, which is
in conformity with microscopic observations.
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Modulus and yield (or tensile) strength of ternary
polymer blends have been simultaneously pre-
dicted over the whole composition range with the
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aid of the proposed predictive scheme which takes
into account (i) respective properties of constitu-
ents, (ii) phase continuity of each component and
(iii) interfacial adhesion. According to the continu-
ity or discontinuity of constituting phases in
ternary systems, the scheme combines in two steps
the models for binary systems: (i) in the interval of
phase duality (co-continuity), a two-parameter
equivalent box model is used along with the data
on the phase continuity rendered by modified
equations of the percolation theory; and (ii) the
effect of a dispersed phase on the mechanical
properties of a continuous phase is treated by using
an approach developed earlier for particulate
systems. Simultaneously predicted values of the
modulus and yield (or tensile) strength of a blend
are interrelated since they are calculated for a
presumed phase structure by using an identical set
of input parameters. Predicted patterns for Eb (or
Gb) and Syb are in a fairly good accord with
experimental data for three different types of
ternary systems characterized by sufficient inter-
facial adhesion. Besides, the fitting of experimental
data with the dependences calculated under
various structural assumptions is an efficient tool
for identification and quantitative analysis of
formed phase structures.

ACKNOWLEDGMENT WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

The first author is greatly indebted to the Grant
Agency of the Academy of Sciences of the Czech
Republic for financial support of this work (Grant
No. A4050706).

REFERENCES WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

1. Utracki LA. Polymer Alloys and Blends. Hanser
Publ.: Munich, 1990.

2. Nielsen LE, Landel RF. Mechanical Properties of
Polymers and Composites. M. Dekker: New York,
1994.

3. Dickie RA. In Polymer Blends. Paul DR, Newman S,
(eds). Academic Press: New York, 1978.

4. KolarÏõÂk J. Polym. Networks Blends 1995; 5: 87.
5. KolarÏõÂk J. Polymer 1996; 37: 887.
6. KolarÏõÂk J. Polym. Eng. Sci. 1996; 36: 2518.
7. KolarÏõÂk J. Eur. Polym. J. 1998; 34: 671.
8. DeGennes PG. J. Phys. Lett. (Paris) 1976; 37: L1.
9. Lyngaae-Jorgensen J, Kuta A, Sondergaard K, Poul-

sen KV. Polym. Networks Blends 1993; 3: 1.
10. KolarÏõÂk J, Agrawal GL, KrulisÏ Z, KovaÂrÏ J. Polym.

Compos. 1986; 7: 463.

11. HoraÂk Z, KolarÏõÂk J, SÏ õÂpek M, Hynek V, VecÏerka F. J.
Appl. Polym. Sci. 1998; 69: 2615.

12. Utracki LA. J. Rheol. 1991; 35: 1615.
13. Lyngaae-Jorgensen J, Utracki LA. Macromol. Symp.

1991; 48/49: 189.
14. Mohanty KK, Ottino JM, Davies HT. Chem. Eng. Sci.

1982; 37: 905.
15. MatsuyamaH, TeramotoM, Tsuchia M. J. Membr. Sci.

1996; 118: 177.
16. KolarÏõÂk J. In Macromolecules 1992, Kahovec J, (ed.).

VSP, Int. Sci. Publ.: Zeist, 1993.
17. KolarÏõÂk J, LednickyÂ F, Locati GC, Fambri L. Polym.

Eng. Sci. 1997; 37: 128.
18. Hashin Z. In Mechanics of Composite Materials,

Wendt F, Liebowitz H, Perone N (eds). Pergamon
Press: New York, 1970.

19. McGee S, McCullough RL. Polym. Compos. 1981; 2:
149.

20. Farber JN, Farris RJ. J. Appl. Polym. Sci. 1987; 34: 2093.
21. Smith TL. Trans. Soc. Rheol. 1959; 3: 113.
22. Nielsen LE. J. Compos. Mater. 1967; 1: 100.
23. Nicolais L, Narkis M. Polym. Eng. Sci. 1971; 10: 97.
24. PukaÂnszky B. Composites 1990; 21: 255.
25. Leidner J, Woodhams RF. J. Appl. Polym. Sci. 1974; 18:

1639.
26. Robeson LM, Noskhay A, Matzner M, Merriam CN.

Angew. Makromol. Chem. 1973; 29/30: 47.
27. Mehta BS, DiBenedetto AT, Kardos J. J. Appl. Polym.

Sci. 1977; 21: 3111.
28. Blahovici TF, Brown GR. Polym. Eng. Sci. 1988; 27:

1611.
29. KolarÏõÂk J. Polym. Compos. 1999; 18: 433.
30. KolarÏõÂk J, Geuskens G. Polym. Networks Blends, 1997;

7: 13.
31. Hsu WY, Wu S. Polym. Eng. Sci. 1993; 33: 293.
32. Sax J, Ottino JM. Polym. Eng. Sci. 1983; 23: 165.
33. KolarÏõÂk J, Velek J, Agrawal GL, FortelnyÂ I. Polym.

Compos. 1986; 7: 472.
34. JancÏaÂrÏ J, DiAnselmo A, DiBenedetto AT. Polym. Eng.

Sci. 1992; 32: 1394.
35. Mamat A, Vu-Khan T, Cigana P, Favis BD. J. Polym.

Sci. B: Polym. Phys. 1997; 35: 2583.
36. Ulrich M, Caze C, Laroche P. J. Appl. Polym. Sci. 1998;

67: 201.
37. ChuangHK, Han CD. J. Appl. Polym. Sci. 1985; 30: 165.
38. Miles IS, Zurek A. Polym. Eng. Sci. 1988; 28: 796.
39. Hobbs SY, Dekkers ME, Watkins VH. Polymer 1988;

29: 1598.
40. Nemirovski N, Siegmann A, Narkis M. J. Macromol.

Sci.-Phys. 1995; B34: 459.
41. KolarÏõÂk J, PukaÂnszky B, LednickyÂ F. In Interfaces in

Polymer, Ceramic, and Metal Matrix Composites,
Ishida H, (ed.) Elsevier: New York, 1988.

42. Guo HF, Gvozdic NV, Meier DJ. Polym. Prepr. 1995;
36(2): 120.

Copyright ã 2000 John Wiley & Sons, Ltd. Polym. Adv. Technol., 11, 75±81 (2000)

Ternary Polymer Blends / 81


