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Abstract: Thin cyclic olefin copolymer (COC) foils were used as intrinsic thermoplastic healing agents
in carbon fiber (CF)-reinforced epoxy laminates. COC films were produced by hot pressing and were
interleaved in the interlaminar regions between each EP/CF lamina, during the hand layup fabrication
of the laminates. Three samples were produced, i.e., the neat EP/CF laminate without COC, and two
laminates containing COC layers with a thickness of 44 µm and 77 µm, respectively. It was observed
that the fiber volume fraction decreased, and the porosity increased with the introduction of COC
layers, and this effect was more evident when thick films were used. These two effects, combined
with the sub-optimal adhesion between COC and EP, caused a decrease in the mechanical properties
(i.e., the elastic modulus, flexural strength, interlaminar shear strength and interlaminar fracture
toughness) of the laminates. Specimens subjected to mode I interlaminar fracture toughness test were
then thermally mended under pressure by resistive heating, through the Joule effect of conductive
CFs. A temperature of approximately 190 ◦C was reached during the healing treatment. The healing
efficiency was evaluated as the ratio of critical strain energy release rate (GIC) of the healed and
virgin specimens. Healed specimens containing COC layers of 44 µm and 77 µm exhibited a healing
efficiency of 164% and 100%, respectively. As expected, the healing treatment was not beneficial for
the neat EP/CF laminate without COC, which experienced a healing efficiency of only 2%. This result
proved the efficacy of COC layers as a healing agent for EP/CF laminates, and the effectiveness of
resistive heating as a way to activate the intrinsic healing mechanism.
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1. Introduction

Carbon fiber reinforced polymers (CFRPs) are in use since the 1950s in the aerospace industry,
to fill the need for materials with better specific properties, compared to those of metals [1,2]. In fact,
structural polymer composites are of interest especially in the transportation field, as they lead to the
production of lightweight components with great structural performance, which allow saving fuel
and decreasing CO2 emissions [3]. These materials are also attractive for the possibility of pairing the
mechanical function with additional functionalities, such as strain monitoring, self-healing and energy
storage capabilities [4–8].

Typical failure mechanism of thermosetting fiber-reinforced polymer composites (FRPCs) include
interfacial delamination and matrix cracking [9–11]. These materials are also vulnerable to impact
damage due to a lack of plastic deformation, which could lead to interlaminar cracks [12]. To mitigate
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this behavior, the design of composite structures is often pursued with a damage-tolerant approach.
For example, CFRPs used in aerospace industry are typically designed with an allowable compressive
strain level lower than 0.4%, whereas commercially available carbon fiber composites have a
compressive strain to failure of approximately 1% [13]. Such conservative design produces overweight
structures that reduce the advantages of high strength-to-weight and stiffness-to-weight ratios of
composite structures.

The repairing methods of such composites with a thermosetting matrix comprise either the
replacement of the entire component or the injection of new material in the damaged part, which are
expensive processes requiring skilled manual intervention [10,14]. Moreover, the first stage of damage
nucleation entails cracks located in the matrix, which can be difficult to detect and repair, due to their
limited dimensions [15]. In addition, microcracking is one of the most severe damages generated in
service, which can lead to the failure of the material and shorten the lifetime of the structure [16].
These phenomena are at the basis of the interest towards composite materials with self-healing abilities,
grown since the 1990s and inspired by the response of natural and biological materials to damage [17,18].
To obtain such healing response in man-made materials, it is necessary that atoms or molecules flow
from their initial position to the damaged zone and restore the physical contact between both crack
faces [19,20]. This could be achieved either by extrinsic or by intrinsic self-healing mechanisms.

In the extrinsic (or autonomous) mechanism, healing is accomplished by including a liquid healing
agent and a liquid catalyst in brittle vessels such as microcapsules, hollow fibers, or microvascular
systems [10,21]. Such brittle vessels are broken by a crack propagating in the matrix, with the consequent
release of the healing agent and the catalyst, which migrate to the crack faces through capillary forces
and react with each other, thereby closing the crack [10,16]. The healing efficiency obtained with
this method, defined as the mechanical strength ratio between the healed system and the virgin
system, was close to 100% [10]. However, this healing action can be performed only once in each
region, due to the thermosetting nature of the involved materials. On the other hand, the intrinsic
(or non-autonomous) self-healing mechanism is based on reversible physical and chemical interactions,
which are governed by molecular mobility, through the application of external heat or pressure [21].

Intrinsic self-healing can be achieved by modifying the thermosetting matrix, by dispersing a
thermoplastic polymer phase. Whenever a crack is formed, the component can be heated above
the softening temperature of the thermoplastic polymer, which can eventually migrate to the crack
zone and fill it. Although this mechanism is non-autonomous and needs an external stimulus, it still
possesses some advantages as compared to extrinsic systems, as it does not require complicated
encapsulation processes of reactive systems. Moreover, this healing mechanism can be repeatedly
performed various times in the same zone [16].

Intrinsic self-healing of thermosetting composites is realized by using several types of thermoplastic
polymers. Karger-Kocsis [22] studied the self-healing effectiveness of different types of epoxy resins
(EP) filled with various amounts of poly(ε-caprolactone) (PCL). The author reported that the dispersion
of the PCL phase in the EP matrix depended on the EP type, and the study revealed a healing
efficiency of up to 80%, with a healing temperature of 80 ◦C. In 2009, Luo et al. [23] studied similar
EP/PCL blends and were able to reach a healing efficiency above 100%, with a healing temperature
of 190 ◦C. Inspired by this works, our group in 2020 for the first time investigated the thermal
mending potential of a cyclic olefin copolymer (COC) in an EP matrix [21]. COC is an attractive
class of amorphous thermoplastic polymers, thanks to their high transparency, good heat resistance,
low moisture absorption, good chemical resistance, low density, and elevated stiffness [12,24–28].
Several EP/COC blends were prepared by mechanically mixing the COC powder and EP resin in the
uncured state. The cured samples were broken and healed under a compressive stress of 15 MPa at
190 ◦C for 1 h, and the resulting healing efficiency was close to 100% for the sample with a COC content
of 40 wt.%.

Due to the high healing efficiencies, thermosetting polymers containing a dispersed thermoplastic
phase also attracted great attention as matrices in fiber-reinforced composites [29–33]. However, up to now,
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the healing agent was mainly added to the laminates in form of fine particles. One drawback associated
with such systems is the significant increase of the viscosity of the blend (particulate or immiscible
blend). Such situation can represent a limitation in the fabrication of composites by resin infusion
processes. One possibility is to insert the healing agent as an interlayer, prior to the infusion of resin.
Various efforts were made in the past to investigate the feasibility of using an interlayer in laminate for
self-healing purposes like complex coaxial electrospun mats [34,35], films [36,37], polymer mesh [38],
etc. Such approach simplifies the laminate fabrication process, i.e., without any modification of resin,
semi-automated process like resin transfer molding becomes feasible. Resultantly, the produced
laminates would not contain production defects like voids, incomplete fiber infusion, etc.

There are different possible ways to provide heat to the system in order to activate the self-healing
process, among which, the most commonly used is the thermal treatment of the composite under
pressure in an autoclave. Another interesting solution that can be exploited with electrically conductive
fibers is the use of resistive heat evolved by the Joule heating effect when an electrical current is passed
through a material. In CFRPs, the fibers can be treated as resistive elements, while the surrounding
matrix acts as an insulator. For this reason, almost the totality of the electrical conduction occurs in the
fibers [39]. The effectiveness of healing of a composite material by resistive heating was demonstrated
by Park et al. [40] in 2008. They induced microcracks by three-point bending on the samples and then
they healed these samples through resistive heating, by applying the electrical contacts directly to the
specimen surfaces. The specimens were effectively repaired after the healing process, performed in the
temperature range of 70–100 ◦C for some minutes.

On the basis of these considerations, the present study investigates the healing potential of
thin COC foils in epoxy/carbon fiber (EP/CF) laminates. The first novelty of this work is the use of
COC not as particles dispersed in the matrix mixture, but as thin films produced by compression
molding, and included in the interlaminar region of the laminates. The second novelty is the Joule
heating, performed via a new lab-made device capable of applying an external current and pressure
simultaneously. The aim of this work was, therefore, to evaluate for the first time the thermal
mending potential of COC thin films of two different thicknesses (44 µm and 77 µm) inserted into the
interlaminar region of EP/CF laminates. The laminates were subjected to an in-depth microstructural
and thermomechanical characterization, and the thermal mending capability of COC was evaluated by
comparing the fracture toughness of virgin and healed laminates.

2. Materials and Methods

2.1. Materials

A bi-component epoxy system used as a thermosetting polymer matrix was provided by Elantas
Europe S.r.l. (Collecchio, Italy). It was composed of an epoxy resin (Elan-tech EC 157.1) and an aminic
hardener (Elan-tech W342). The selected reinforcement was a hybrid unidirectional fabric (GV-201
U TFX) provided by Angeloni s.r.l. (Quarto d’Altino, VE, Italy), consisting of high strength CF fabric
(200 g/m2) and thermoplastic-coated glass yarns (weft, 17 g/m2). The COC pellets of TOPAS® 8007,
supplied by TOPAS Advanced Polymers GmbH (Kelsterbach, Germany), were used to produce COC
thin films. According to the producer’s datasheet, this COC consisted of 65 wt.% ethylene and 35 wt.%
norbornene and had a density of 1.02 g/cm3, a glass transition temperature (Tg) of 78 ◦C, and a melt
flow index (MFI) of 1.7 g/10 min (190 ◦C, 2.16 kg).

2.2. Sample Preparation

2.2.1. COC Thin Films

COC thin films were produced by using a Carver 4122E hot press (Carver, Inc., Wabash, IN, USA).
COC pellets were disposed with a precise interparticle distance between two copper plates, covered
by polyethylene terephthalate (Mylar®) sheets. The pellets were positioned with a lab-made wooden
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stencil with 98 holes placed at a distance of 2.0 ± 0.2 cm, in the longitudinal and transversal direction.
This distance was calculated based on how much a single COC pellet spread on the surface, under a
pressure of 4.1 MPa at a temperature of 190 ◦C. The wooden stencil was removed before compression
molding. This system was used to produce films with two different thicknesses, namely 44 µm (44COC)
and 77 µm (77COC). To produce 44COC films, one COC pellet was added into each hole of the stencil
(98 grains), while for the 77COC, two pellets were added per hole (196 grains). This production process
guaranteed the production of thin films with uniform thickness. Both film types were produced
at 190 ◦C under an applied pressure of 4.10 MPa for 44COC and 2.74 MPa for 77COC, respectively.
The pellets were pre-heated in the press for 1 min and then the pressure was applied for 14 min.

2.2.2. EP/COC/CF Composites

For the preparation of the unidirectional EP/COC/CF composites, first the epoxy base and the
hardener were mixed at a relative weight ratio of 100:30. This mixture was used as matrix to prepare
laminates with the carbon fiber fabric and the COC films, via hand-layup and vacuum bagging
techniques. Two different hybrid composites were prepared—the first containing COC films with a
thickness of 44 µm (EP/44COC/CF) in each interlaminar region, and the second with COC films with
thickness of 77 µm (EP/77COC/CF). Each film was placed between two layers of CF in such a way that
a thin layer of epoxy matrix was always between the COC film and CF fabric. A neat EP/CF composite
without COC was produced as a control sample. Figure 1 shows a schematic diagram of the fabrication
of these unidirectional EP/COC/CF hybrid composites.
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Figure 1. Schematic diagram representing the fabrication process of EP/COC/CF hybrid composite.

Each laminate type was produced with two different numbers of laminae. Thick composites
with 14 CF laminae were produced to test the interlaminar fracture toughness and interlaminar shear
strength. A thin PET film (26 µm) was inserted in the mid-plane, in order to create a pre-crack to be
propagated under controlled conditions during the interlaminar fracture toughness test. Additionally,
thin composites with 4 CF laminae were fabricated to produce specimens for three-point bending and
electrical resistivity tests.
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The prepared laminates were vacuum bagged for 15 min, with a vacuum pump (Edwards RV5)
and then they were put in a compression molding apparatus (Carver 2699) and cured for 8 h at
100 ◦C, under a pressure of 0.8 MPa. This curing cycle, chosen among those indicated by the resin
manufacturer, allowed to crosslink the matrix at a temperature above the glass transition temperature
(Tg) of COC, in order to promote the adhesion between EP and COC. The prepared laminates were
weighed to determine the weight distribution of the components. The nomenclature, composition,
and thickness of the prepared laminates is reported in Table 1.

Table 1. Composition of the prepared laminates.

Composite CF Layers COC Layers CF
(wt.%)

EP
(wt.%)

Hardener
(wt.%)

COC
(wt.%)

Thickness
(mm)

EP/CF 14 0 78.7 16.4 4.9 0 2.66 ± 0.02
EP/44COC/CF 14 13 67.5 17.0 5.1 10.4 3.36 ± 0.02
EP/77COC/CF 14 13 62.9 14.2 4.2 18.7 3.71 ± 0.08

EP/CF 4 0 80.0 15.4 4.6 0 0.82 ± 0.01
EP/44COC/CF 4 3 70.3 15.6 4.7 9.4 1.00 ± 0.03
EP/77COC/CF 4 3 57.4 22.1 6.7 13.8 1.14 ± 0.06

2.3. Characterization Techniques

The microstructure of the EP/CF and EP/COC/CF composites was analyzed with a Zeiss Axiophot
optical microscope (Carl Zeiss AG, Oberkochen, Germany), coupled with a Leica DC300 digital
camera (Leica Microsystems Ltd., Heerbrugg, Switzerland). In the case of the EP/COC/CF laminates,
both the unhealed (virgin) and healed samples were analyzed. The transversal and longitudinal
sample cross-sections were embedded in an epoxy resin and cured for 24 h at room temperature.
Then, the samples surface was polished by abrasive grinding papers made of silicon carbide with grit
polishing size of 240, 800, 1200, and 4000, sequentially. Finally, polishing was performed with cloths
impregnated with 3 µm and 1 µm diamond particles.

The experimental density of the samples EP/CF and EP/COC/CF was measured with the liquid
displacement method at 23 ◦C, by using a Mettler-Toledo ME104 (Schwerzenbach, Switzerland)
precision balance, with a sensitivity of 10−4 g. Samples were weighted in air and in ethanol, following
the Standard ASTM D792-13. The density of CF was measured with a Micromeritics® Accupyc 1330
helium pycnometer (Micromeritics Instrument Corporation, Norcross, GA, USA) at 23 ◦C, by using a
testing chamber of 3.5 cm3. Then, the theoretical density of the composites (ρt) was evaluated with
Equation (1):

ρt =
1

ω f
ρ f

+ ωm
ρm

+
ωCOC
ρCOC

(1)

where ω f , ωm, and ωCOC are the weight fractions of carbon fibers, matrix (epoxy + hardener) and COC,
respectively (see Table 1), and ρ f , ρm, and ρCOC are the density of each of these phases, equal to

1.78 g/cm3, 1.15 g/cm3, and 1.01 g/cm3, respectively. The experimental density
(
ρexp
)

of the prepared
composites was then compared with the theoretical density, and the void volume fraction (ϑv)

was calculated, as described in Equation (2):

ϑv =
ρt − ρexp

ρt
(2)

Thermogravimetric analyses (TGA) were performed through a Mettler TG50 (Mettler-Toledo
GmbH, Schwerzenbach, Switzerland) machine, in order to investigate the thermal stability of unhealed
EP/CF, EP/44COC/CF, and EP/77COC/CF samples. The tests were carried out from 25 ◦C to 700 ◦C,
at a heating rate of 10 ◦C/min and under a constant nitrogen flow of 100 mL/min. This test allowed
the calculation of Tonset, i.e., the starting degradation temperature calculated as the intersection of the



Molecules 2020, 25, 5347 6 of 18

tangents of the curve, before and after the start of the degradation, Td_EP and Td_COC, i.e., the peak
temperatures of the mass loss derivative signal at the degradation of the EP and COC phases,
respectively, and mr, i.e., the residual mass at 700 ◦C, from which the weight percent of CF present in
the composite was determined.

Differential scanning calorimetry (DSC) analysis were performed through Mettler DSC30
calorimeter (Mettler-Toledo GmbH, Schwerzenbach, Switzerland) to investigate the thermal behavior
of the unhealed EP/CF, EP/44COC/CF, and EP/77COC/CF samples. The analysis was performed in
nitrogen atmosphere with a constant flow of 100 mL/min, and three scanning steps were performed,
i.e., a first heating phase from 0 ◦C to 130 ◦C, a cooling phase from 130 ◦C to 0 ◦C, and a second heating
phase from 0 ◦C to 130 ◦C. A heating/cooling rate of 10 ◦C/min was adopted. The test allowed the
determination of the Tg of epoxy and COC.

Flexural properties of the unhealed EP/CF, EP/44COC/CF, and EP/77COC/CF samples were
evaluated by using an Instron® 5969 universal testing machine (Norwood, MA, USA). According
to the ASTM D790-15 standard, the rectangular samples were produced from the 4-layer laminates,
with a cross-section with the nominal dimensions of 12 × 1 mm2. A span to depth ratio of 60:1 was
imposed for the flexural modulus measurements, while a ratio of 40:1 was fixed for the flexural strength
evaluation. According to the standard, a cross-head speed was imposed to obtain a strain rate of
0.01 mm−1 on the outer surface of the samples. The flexural modulus, strength, and strain at break
were evaluated, as described in the ASTM D790 15 standard. At least five specimens were tested for
each composition.

Short beam shear (SBS) test was performed to evaluate the interlaminar shear strength (ILSS) of the
EP/CF and EP/COC/CF samples, according to the ASTM D2344 standard. Fourteen-layer composites
were tested under three-point bending configuration, with an Instron® 5969 universal testing machine.
Specimens for three-point bending tests were prepared with a length equal to six times the thickness
and the width equal to two times the thickness. The tests were performed by imposing a cross head
speed of 1 mm/min. The adopted support span length was four times the thickness of the specimen.
The test was terminated when a load drop of 30% was reached or the cross-head displaced more than
the thickness of the specimen. At least five specimens were tested for each composition. The ILSS was
evaluated using the Equation (3):

ILSS = 0.75×
Pm

b× h
(3)

where Pm is the maximum load, and b and h are the width and thickness of the specimen, respectively.
In order to evaluate the fracture toughness of the EP/CF and hybrid EP/COC/CF laminates,

an interlaminar fracture toughness test was performed, according to ASTM D5528-13. These tests were
conducted using an Instron® 5969 universal testing machine with a cross-head speed of 2.5 mm/min,
on double cantilever beam (DCB) samples with nominal dimensions of 150 × 23 × 3 mm3. Two loading
blocks were bonded to the specimen at 50 mm, far from the starting crack tip (a0). The specimen
configuration is reported in Figure 2a. To record the crack length during the test, a 60 mm graduated
scale with 1 mm accuracy was drawn on the lateral side of each sample, as shown in Figure 2b.

The crack advancement was monitored with a digital webcam (Logitech® B910HD). The specimens
were pre-cracked by loading them until 5 mm of crack advancement, followed by unloading and
reloading for fracture toughness testing, until a crack advancement of 50 mm. During the tests,
the applied load (P), crack opening displacement (δ) and crack length (a) values were measured,
and the mode I interlaminar fracture toughness (GI) was calculated via Equation (4):

GI =
3Pδ

2b(a + |∆|)
(4)

where b is the specimen width and |∆| is a factor used to correct the vertical displacement and rotation
effects at the delamination crack tip. In this way, the interlaminar fracture toughness (GIC_v) of the
virgin EP/CF, EP/44COC/CF, and EP/77COC/CF samples was evaluated. After the test, the samples
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were repaired, as described in Section 2.4.2, and the same tests were performed again to calculate the
healing efficiency. To evaluate the healing efficiency of the laminates, the initiation values of GIC were
selected on the basis of the point where delamination was visually observed (VIS). This allowed the
determination of the mode I interlaminar fracture toughness of the virgin (GVIS

IC_v) and repaired
(
GVIS

IC_r

)
specimens, corresponding to VIS. The apparent healing efficiency (ηVIS) of the prepared samples was
thus computed, as reported in Equation (5):

ηVIS =
GVIS

IC_r

GVIS
IC_v

× 100 (5)

Finally, the microstructural features of the healed EP/CF and EP/COC/CF composites were
analyzed by using a Zeiss Axiophot optical microscope (Oberkochen, Germany), coupled with a Leica
DC300 digital camera (Leica Microsystems Ltd., Heerbrugg, Switzerland).
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Figure 2. Mode I interlaminar fracture toughness sample. (a) Dimensions and configuration, and (b)
example of crack propagation during a test.

2.4. Healing of the Composite Samples

2.4.1. Electrical Resistivity Measurements

Resistivity measurements were performed on the laminates with a four-probe method, in order
to evaluate the possibility of heating the sample through Joule effect, by applying a constant voltage.
From 4-layer EP/CF and EP/COC/CF laminates, rectangular specimens were produced with nominal
dimensions of 40 × 13 × 1 mm3. At least five samples for each composition were tested. Silver-based
paint was put on the surfaces in contact with the voltmeter electrical terminals, and on the lateral sides
of each specimen, to improve the electrical conductivity of the surfaces [41]. The good quality of the
contacts is crucial to produce reliable and comparable results. A DC electricity generator (ISO-TECH
IPS 303DD) and two digital multimeters (ISO-TECH IDM 67) were utilized. By settling an output
voltage of the electrical generator at 0.1, 0.2, 0.3, 0.5 V, the current and the voltage passing through the
samples were recorded. The distance between the voltage contacts (l′) was set at 11 mm. The test
was performed with a lab-made device, composed of two aluminum electrodes, one fixed and one
movable transversely, covered with two copper plates. A compressive force to the mobile electrode
was applied by means of an apparatus that transforms an applied torque into a translational force.
This was done not only to hold the sample during the test but also to ensure that the same compression
force was always applied on all specimens, which is important because the electrical resistivity is
greatly affected by the applied pressure. In fact, a compression stress in the through-thickness direction
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produces a decrease in the electrical resistivity [42], due to an increase of the fiber orientation. On the
contrary, a compression stress in the fiber direction produces an increase of the electrical resistivity [43].
The current was applied on the specimens by means of electrical terminals connected to the copper
electrode of the device, while the voltage was measured by electrical terminals connected directly on
the specimen surfaces. The four-point resistivity of the samples was evaluated using Equation (6):

ρ =
Vwh

Il′
(6)

where ρ is the resistivity (Ω.mm), V is the voltage (V), w is the width of the sample (mm), h is the thickness
of the sample (mm), I is the current the ammeter measures flowing through the sample (A), and l′ is the
distance between the two points where the voltmeter wires make contact with the sample (mm).

2.4.2. Self-Healing by Joule Heating Mechanism

The healing of the delaminated samples was performed by exploiting the Joule heating effect
through a lab-made device. The device was composed of two steel electrodes covered with copper
plates, in order to enhance their electrical conductivity. Here, the current was applied through electrical
terminals (Figure 3). The lateral surfaces of the specimens were covered with silver paint to increase
the electrical conductivity of the contacts. Similar to resistivity measurements, one of the electrodes
was fixed, while the second was free to move in translational direction, through the application of
a force. The pressure (PL) applied to the specimens was equal to 180 kPa, which was the minimum
pressure that the torque screw was able to apply. A layer of PET between each copper plate and
steel was inserted to decrease the electrical losses through the steel supports, converging the current
inside the tested specimen. To activate the intrinsic self-healing mechanism on the fracture surfaces,
a repairing pressure (PR) of 500 kPa was applied, by using a torque screw vice. This pressure level
was selected according to the indications obtained in a previous work on the self-healing behavior of
epoxy/COC blends [44]. A piece of glass ceramic was inserted between each side of the vice shoulders
and the specimen, to minimize heat losses through the steel vice. The specimen was separated from
the glass ceramic by polytetrafluoroethylene (PTFE) sheets, to ease the detachment of the sample.
The current was applied by using a direct current electricity generator (Agilent 6674A) that is able to
apply a maximum voltage of 60 V and a maximum current of 35 A. The voltage and current parameters
were manually set for each sample, to obtain a temperature on the crack surface in a range between
170 ◦C and 190 ◦C for 1 h. This healing temperature was selected according to the indications of our
previous work on the self-healing behavior epoxy/COC blends [21,44].
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Figure 3. (a) Lab-made Joule heating repairing device, and (b) schematic drawing of the Joule heating
repairing mechanism (top view).

The temperature reached by the samples during the healing process was measured by using a
thermocouple (RS 1319A K-Type Thermometer) and an infrared thermal imaging camera (FLIR E6).
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The thermocouple was used to check the temperature on the crack surfaces inside the sample, which was
on average 10 ◦C higher than the surface temperature. By using the thermal imaging camera, the surface
temperature and its profile was continuously checked during the repairing operation, to ensure that the
temperature was always in the range 160–200 ◦C. Examples of temperature profiles obtained during
the healing process on the EP/44COC/CF are reported in Figure 4. According to Figure 4a, the vice
does not appear to be thermally insulated and the temperature reached on the crack external surface
was not high enough. The temperature profile seems to be homogeneous and it is representative of
the desired profiles obtained for all tested specimens. Due to the presence of a thermally insulating
material between the vice and the specimen, the vice was well insulated, and the temperature profile
was reasonably homogeneous (Figure 4b). The homogeneity of the temperature profile on the whole
surface of the sample was dependent on the quality of the electrical contacts, between the lateral side
of the specimen covered with silver paint and the electrodes.
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3. Results and Discussion

3.1. Characterization of the Composites

The optical microscope pictures of the longitudinal and cross-sectional view of the unhealed
samples (4-layer laminates) are reported in Figure 5. The EP/CF samples (Figure 5a,b) present some
matrix-rich zones, close to the weft of the fabric, which both act as defect in the material and negatively
affect the mechanical properties of the composite. Figure 5c,d show the EP/44COC/CF samples, and the
COC films could be observed between the CF layers. The COC layers were parallel to the fiber
orientation, except for the areas close to the fabric weft. Between the COC layers, some matrix-rich
areas were present.
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Figure 5. Optical microscope images of the polished surfaces of the unhealed specimens (4-layer samples):
(a,b) EP/CF; (c,d) EP/44COC/CF; and (e,f) EP/77COC/CF. Longitudinal view (a,c,e) and cross-sectional
view (b,d,f).

The EP/CF layers were always separated by a COC film, meaning that the response of the
delamination tests performed would probably be influenced by the adhesion between the COC film and
the matrix. In the case of the EP/77COC/CF sample (Figure 5e,f), the presence of EP was rather limited
between the CF and COC. This apparently lowers the amount of epoxy, compared to EP/44COC/CF,
which was confirmed by the volumetric composition of the composites, reported in Table 2.

Table 2. Weight and volume compositions of the prepared 4-layer laminates.

Composite ωf
(wt.%)

ωm
(wt.%)

ωCOC
(wt.%)

ϑf
(vol%)

ϑm
(vol%)

ϑCOC
(vol%)

ϑv
(vol%)

EP/CF 78.7 21.3 0 68.3 28.7 0.0 3.1
EP/44COC/CF 67.5 22.1 10.4 53.0 27.0 14.4 5.6
EP/77COC/CF 62.9 18.4 18.7 47.3 21.5 24.8 6.4

ω f = fiber weight fraction; ωm = matrix weight fraction; ωCOC = COC weight fraction; ϑ f = fiber volume fraction;
ϑm = matrix volume fraction; ϑCOC = COC volume fraction; ϑv = void volume fraction.

An increase in the thickness of the COC films caused a decrease in the CF volume fraction and
an increase in the void volume fraction. The void content in the laminates containing COC was
approximately twice that detected for the EP/CF laminate, as it reached a value of 6.4 vol% for the
EP/77COC/CF composite, which could impair the ultimate tensile properties and the fracture toughness
of the prepared laminates. This increment of porosity was partially due to the presence of a continuous
impermeable film of COC, through which the air bubbles could not be efficiently removed by applying
vacuum in the lateral (thickness) direction. This problem could be avoided in the future by fabricating
laminates through resin infusion methods, which involve the impregnation of the laminate and the air
removal, along the fiber direction.
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TGA analysis was performed to investigate the thermal degradation resistance of the prepared
composites. Figure 6 shows the trends of the residual mass and mass loss derivative, as a function of
temperature, obtained from the 4-layer laminates. Table 3 reports the values of Tonset, Td_EP, Td_COC,
and mr of these laminates.
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Table 3. Weight and volume compositions of the prepared 4-layer laminates.

Composite Tonset (◦C) Td_EP (◦C) Td_COC (◦C) mr (%)

EP/CF 336.6 366.3 - 74.2
EP/44COC/CF 341.9 370.8 477.7 67.1
EP/77COC/CF 344.3 374.5 484.3 62.3

Tonset = onset degradation temperature; Td_EP = peak temperature of the mass loss derivative signal at the degradation
of EP; Td_COC = peak temperature of the mass loss derivative signal at the degradation of COC; mr = residual mass.

The neat laminate EP/CF shows a single degradation step, associated with the degradation of
EP phase, at approximately 366 ◦C. The same step was observable in the laminates containing COC,
at a slightly higher temperature, and it was followed by the degradation step of the COC phase
at approximately 480 ◦C. The initial degradation temperature of the composites (Tonset) increased
slightly with COC addition, passing from 336 ◦C of EP/CF to 342 ◦C and 344 ◦C for EP/44COC/CF and
EP/77COC/CF, respectively. Due to a higher COC content and a consequent lower weight fraction of
CF, the residual mass decreased by increasing the thickness of the COC layers.

DSC analysis was carried out to investigate the thermal transitions of COC and the influence of
COC on the Tg of the EP phase. Figure 7 shows the DSC thermograms of the first and the second
heating scans of the prepared laminates, while Table 4 reports the most important DSC results.

Even if T1
g_EP

and T2
g_EP

seemed to slightly increase with the COC amount, it could be concluded
that the thermal behavior of the epoxy matrix was not substantially affected by the COC introduction.
The systematic Tg increase observed in the second heating scan was due to the completion of the
crosslinking of the EP matrix in the first heating stage. In the case of COC, the T2

g_COC
values were

slightly lower than the corresponding T1
g_COC

ones. This could be due to a partial degradation of the
COC structure with the applied thermal treatment. However, this effect was not dramatic, and it could
be concluded that the thermal behavior of the EP and COC phases within these composites seemed to
be independent of the relative composition of the constituents.

Representative stress–strain curves of the three-point bending test and short-beam shear test
on the prepared laminates are reported in Figure 8. The most important results from the tests are
summarized in Table 5.
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Table 4. Results of DSC tests on the prepared laminates.

Composite T1
g_EP

(◦C) T1
g_COC (◦C) T2

g_EP (◦C) T2
g_COC (◦C)

EP/CF 89.08 - 90.59 -
EP/44COC/CF 88.25 82.09 92.92 72.44
EP/77COC/CF 92.28 78.78 94.45 76.63

T1
g_EP

, T2
g_EP

= glass transition temperature of the EP phase, first and second heating scan, respectively;
T1

g_COC
, T2

g_COC
= glass transition temperature of the COC phase, first and second heating scan, respectively.
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curves; and (b) load-displacement curves from short-beam shear tests.

Table 5. Flexural properties and interlaminar shear strength (ILSS) values of the prepared laminates.

Composite Flexural Modulus (GPa) Flexural Strength (MPa) ILSS (MPa)

EP/CF 64.2 ± 7.1 771.4 ± 78.3 45.9 ± 4.8
EP/44COC/CF 51.1 ± 6.5 217.2 ± 18.2 13.3 ± 0.6
EP/77COC/CF 51.4 ± 8.5 171.3 ± 28.7 9.0 ± 0.5

The EP/CF sample showed the typical brittle behavior of composites, in which the flexural stress
exhibited a maximum, corresponding to the first breakage of the fiber layer, after which the load support
started to decrease in a stepwise behavior. EP/44COC/CF and EP/77COC/CF showed a different flexural
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behavior, without a sudden drop of the load during the test. This indicated that the introduction of the
COC layers strongly affected the mechanical behavior of the specimens, and the premature failure in
these laminates was caused by a poor interlaminar adhesion between the COC layer and the matrix.
The flexural modulus decreased from 64.2 GPa of EP/CF to 51.1 GPa of EP/44COC/CF, which was
mainly due to the decrease in the fiber volume fraction, with the addition of COC. However, the elastic
modulus of the EP/COC/CF laminates did not seem to be influenced by the thickness of the COC layers.
On the other hand, the insertion of the COC layers in interlaminar position decreased drastically the
flexural strength of the composite, and this effect was even more evident with thicker COC layers,
probably due to an increase in porosity. This was a major drawback of these systems and would be the
object of further investigation in next research activities.

Representative load-displacement curves of the SBS test are shown in Figure 8b, while the ILSS
values are summarized in Table 5. The maximum load and the ILSS decreased considerably with
the addition of COC, and this was more evident for the thicker COC films. The ILSS decreased from
45.9 MPa of the neat EP/CF laminate to 9.0 MPa for the EP/77COC/CF sample. This was again due to
the poor adhesion between the COC films and the epoxy matrix and the increase in porosity.

3.2. Evaluation of the Healing Efficiency

In order to evaluate the effect of the COC addition of the electrical properties of the prepared
laminates and to determine the current and voltage levels to apply to heal the samples at about 190 ◦C,
a four-probe method was performed, and the electrical resistivity of the composites was determined.
Table 6 reports the values of resistivity of the samples and the range of voltage and current applied to
the samples, to activate the self-healing mechanism at the selected healing temperature (i.e., 190 ◦C).

Table 6. Electrical resistivity and electrical parameters applied to heal the prepared laminates at 190 ◦C.

Composite Resistivity (Ω.mm) Voltage (V) Current (A)

EP/CF 0.0320 ± 0.0005 4.5 ± 0.5 19.7 ± 4.9
EP/44COC/CF 0.0372 ± 0.0001 3.8 ± 0.2 18.5 ± 4.1
EP/77COC/CF 0.0378 ± 0.0002 4.1 ± 0.4 15.0 ± 4.4

Considering the standard deviation values associated with these measurements, it could be concluded
that neither does the COC foil introduction nor do their thickness significantly influence the resistivity of
samples. Consequently, the samples could be healed by applying similar voltage and current levels at
190 ◦C. This probably meant that the decrease of the CF volume fraction detected in the EP/44COC/CF
and EP/77COC/CF samples, did not significantly deteriorate the conductive behavior of the laminates.

The fracture behavior of the prepared samples was evaluated through mode I interlaminar
fracture toughness tests, and the results are displayed in Figure 9. Figure 9a shows the representative
load-displacement curves of virgin (unhealed) laminates. All samples exhibit a brittle behavior, and the
crack propagation occurred in correspondence of each decreasing load step. The EP/CF was able to
sustain almost the double the load as compared to the other samples, which indicated that the crack
propagation in the EP/44COC/CF and EP/77COC/CF specimens was faster than that in the EP/CF
laminates. This was reflected in lower values of GI, as observable in Figure 9c, which was again due to
a weak interfacial adhesion between the COC and the EP. On the other hand, GI was not significantly
affected by the thickness of the COC layers.

Figure 9b shows the representative load-displacement curves of the repaired samples. As expected,
EP/CF sample did not show any healing capacity, due to the thermosetting nature of EP, while the
EP/44COC/CF and EP/77COC/CF sustained loads almost equal or higher than the virgin ones. This was
a clear indication that the healing treatment was successful in softening the COC layer and performing
the intrinsic healing mechanism. Higher load values for the healed laminates compared to the virgin
samples could be associated with the fact that the healing treatment was performed at temperatures
higher than the Tg of EP, which resulted in increased cross-linking of the EP matrix. In agreement with
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this result, the values of GI of the repaired samples (Figure 9d) were equal or higher than those of the
virgin samples. This phenomenon was related to the diffusion of the COC phase in the crack zone,
which showed a higher fracture toughness with respect to the epoxy matrix. The average values of
the maximum load (Pmax), GVIS

IC , and of the resulting healing efficiency for the produced laminates
are summarized in Table 7. The neat EP/CF sample showed limited healing efficiency (less than 2%),
due to the little contribution provided by the residual cross-linking or by the softening of the epoxy
resin, during the healing treatment at 190 ◦C. On the other hand, the healed laminates containing COC
could sustain a load higher than that of unhealed ones and exhibited a higher interlaminar fracture
toughness, which meant that all contribution to the repair of EP/COC/CF specimens was given by
the COC thermoplastic phase. A healing efficiency of 164% could be detected in the EP/44COC/CF
laminate, which was higher than the healing efficiency offered by laminate with thicker COC films
(100%). Therefore, thinner COC films had a higher healing potential compared to the thicker films.

Previous works of our group on the EP/COC blends [4,33] showed that the healing efficiency
increased with an increase in the COC content. However, EP/44COC/CF showed a healing efficiency
better than the EP/77COC/CF. All these results suggest that an increase in the thickness of the COC
layers inserted into the laminates promoted an increase in the healing efficiency, but only until a
threshold beyond which the efficiency started to decrease. This could be proved by producing laminates
with thinner COC layers, which would be the object of future studies.
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and (d) representative trend of GI as a function of the delamination length in the healed samples.
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Table 7. Results of the mode I interlaminar fracture toughness test on the virgin and healed laminates.

Composite
Pmax (N) GVIS

IC (kJ/m2) Healing Efficiency (%)

Unhealed Healed Unhealed Healed

EP/CF 56.4 ± 3.5 16.4 ± 5.4 0.72 ± 0.07 0.01 ± 0.01 <2
EP/44COC/CF 22.3 ± 1.9 28.3 ± 1.6 0.06 ± 0.02 0.09 ± 0.01 164 ± 37
EP/77COC/CF 26.4 ± 2.5 28.6 ± 4.5 0.08 ± 0.02 0.08 ± 0.02 100 ± 12

Pmax = maximum load; GVIS
IC = interlaminar fracture toughness.

Figure 10 shows optical microscope images of the longitudinal section of the unhealed and healed
samples. No particular microstructural differences due to the COC thickness could be detected in
these images, and also the healing treatment did not seem to significantly affect the morphology of the
prepared laminates. This meant that the observed increase of the healing capability was solely due
to the flow of the softened COC within the crack front, and not because of the other microstructural
effects in the composites.
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4. Conclusions

This work reported the use of thin films of an amorphous cyclic olefin copolymer (COC) as a
healing agent for epoxy/carbon (EP/CF) laminates. Thin films of two different thicknesses were created
by hot pressing COC granules, and inserted in the interlaminar region of the EP/CF laminates, produced
through a hand lay-up technique. The porosity was observed to increase with the introduction of
the COC layers, partially because the continuous interlaminar COC films hindered a proper air
removal. This effect, together with the decrease in fiber volume fraction with the COC layer thickness,
contributed to degrade the mechanical properties, such as the elastic modulus, the mechanical strength,
and the fracture toughness. This was a major drawback of this system, as it could limit the use of
this material in structural applications. This will be the object of investigation in the next research
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activities. Laminates were subjected to mode I interlaminar fracture toughness tests, after which they
were thermally mended by resistive heating, thanks to the Joule heating promoted by the presence
of the CF layers. Healed specimens containing 44 µm and 77 µm COC layers exhibited a value of
GIC 164% and 100% higher than that measured on virgin specimens, respectively, while the healing
treatment was not effective for the neat EP/CF sample.

This work not only proved that the insertion of the COC layers was effective as a healing agent
for the EP/CF laminates, but also demonstrated the efficacy of the Joule heating effect to activate the
intrinsic healing mechanism. Future work will be focused on the investigation of the healing properties
of thinner COC layers, and also different processing techniques (i.e., resin infusion) will be considered,
to address the impairment of mechanical properties brought by the insertion of the COC interlayers.
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