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Abstract: The present work reports on the production and characterization of acrylonitrile butadiene
styrene (ABS) hybrid nanocomposite filaments incorporating graphene nanoplatelets (GNPs) and
carbon nanotubes (CNTs) suitable for fused filament fabrication (FFF). At first, nanocomposites with a
total nanofiller content of GNP and/or CNT of 6 wt.% and a GNP/CNT relative percentage ratio of 0, 10,
30, 50, 70, and 100 were produced by melt compounding and compression molding. Their mechanical,
electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) properties were
evaluated. The hybrid nanocomposites showed a linear increase in modulus and decrease in strength
as a function of GNP content; on the other hand, the addition of CNT in hybrid nanocomposites
determined a positive increase in electrical conductivity, but a potentially critical decrease of melt flow
index. Due to the favorable compromise between processability and enhancement of performance
(i.e., mechanical and electrical properties), the hybrid composition of 50:50 GNP/CNT was selected as
the most suitable for the filament production of 6 wt.% carbonaceous nanocomposites. EMI SE of
ABS-filled single CNT and hybrid GNP/CNT nanofillers obtained from compression molding reached
the requirement for applications (higher than −20 dB), while slightly lower EMI SE values (in the
range −12/−16 dB) were obtained for FFF parts dependent on the building conditions.

Keywords: conductive composites; carbon nanotubes; graphene; electromagnetic interference shielding;
mechanical properties

1. Introduction

Polymer nanocomposites with carbonaceous nanomaterial reinforcements are extensively
investigated due to their remarkable performance including mechanical, electrical, and thermal
properties. In particular, the use of nanomaterials can offer extraordinary structural and functional
properties of polymers that can be tailored for broad application in many fields, but sometimes requires
an adequate optimization of material processability. The nanocomposites could help the development
of lightweight structural materials with functionalities that can be utilized for electronic components,
micro-batteries, circuits, and electromagnetic shielding [1–5].

The extensive global development of novel electronic devices in many fields such as industrial,
household, medical, science, military, and telecommunication cause electromagnetic pollution.
Therefore, electromagnetic interference (EMI) is a major concern in modern society because it could
affect the normal functionality of electronic devices and human health. Consequently, shielding is
necessary for preventing electronics from undesired electromagnetic radiations associated with strategic

Polymers 2020, 12, 101; doi:10.3390/polym12010101 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-8708-6801
https://orcid.org/0000-0001-9641-9735
https://orcid.org/0000-0002-8627-8833
http://www.mdpi.com/2073-4360/12/1/101?type=check_update&version=1
http://dx.doi.org/10.3390/polym12010101
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 101 2 of 20

systems utilized in the aerospace industry, aircraft, automobiles, flexible electronics, and wearable
devices [6–9]. Conductive materials that are employed in shielding electromagnetic waves are
typically metals and many forms of carbonaceous materials, e.g., carbon black, carbon nanotube
(CNT), and graphite/graphene (GNP). However, utilizing metals in EMI shielding applications could
cause drawbacks including an increase in weight, electrochemical corrosion, and more expensive
processing methods [10–13]. Conductive polymers gained popularity in EMI shielding applications
due to their relatively low cost, light weight, and easy processing. Because neat polymers possess poor
EMI shielding properties, they are often compounded with conductive nanofillers via conventional
processing methods (e.g., solvent casting [14–16], melt mixing followed by compression molding [17–20],
and extrusion and injection [21]), as well as via additive manufacturing [2,22,23].

In the last decade, additive manufacturing (AM), also known as three-dimensional (3D) printing,
was largely developed in both industry and research centers. An AM machine reads in data from
a digital model and lays down or adds successive layers of liquid, powder, or sheet material, in a
layer-upon-layer fashion, to fabricate a 3D object. This technology has several advantages such as the
possibility to fabricate a final part without using auxiliary tool/molds and building complex geometric
parts which are difficult via conventional methods [24–27]. Generally, additive manufacturing is more
preferable for the relatively small-scale productions and it exhibits evident advantages with respect to
subtractive manufacturing methodologies because of no residue after the process. There are several
popular methods for AM such as stereolithography (SLA), using a focused ultraviolet (UV) laser beam
to photopolymerize the uncured resin layer by layer, selective laser sintering (SLS), using a scanning
laser beam to sinter the powdered materials at the cross-sections, and fused filament fabrication (FFF),
using a small extruder to melt and deposit a thermoplastic filament. The FFF technique, which is most
dominant in AM methods due to its low cost and easy use, requires fewer post-processing steps, and a
large variety of materials can be used. The process is a simple extrusion of filaments in the molten
state through a heated nozzle (350–600 µm) to create 3D objects via layer-by-layer deposition in the
horizontal plane (XY plane) [26].

The development of nanocomposite materials could be a way to improve the properties of
components produced by FFF. Some studies reported that combining two nanofillers (e.g., carbon
nanotubes and graphene) could induce a synergistic effect in various matrices such as epoxy [28–30],
polylactic acid (PLA) [31–33], and thermoplastic polyurethanes (TPUs) [34]. The mechanical properties
and the thermal and electrical conductivities of double-filler nanocomposites could exhibit higher
values than those of single-filler nanocomposites, due to the formation of a co-supporting network of
both fillers. However, the synergistic effect of nanofillers is not completely understood scientifically.
Very recent works reported hybrid graphene nanoplatelet (GNP)/carbon nanotube (CNT) nanofillers
for the FFF technique in different matrices, such as PLA [31–33] and polyether ether ketone (PEEK) [35].
PLA-carbon based nanocomposites derived from the FFF technique were also investigated in terms
of electrical and thermal conductivity and electromagnetic shielding behavior. In particular, taking
into consideration the Tg of the PLA matrix, a specific approach to compensate for the temperature
effect on the resistivity of a PLA conductive sample in the range 20–50 ◦C was discussed [36].
In order to enlarge the number of application fields with high-performance properties, especially
for high temperature, a different approach was recently proposed with processing and 3D printing
of PEEK filled with GNP/CNT up to 380 ◦C. Tensile properties, electrical and thermal conductivity,
and tribological properties of 3D-printed nanocomposites were properly studied and considered
for aerospace applications [35]. However, no research reported a hybrid GNP/CNT nanofiller in an
acrylonitrile butadiene styrene (ABS) matrix, whose temperature range of applications goes up to 80 ◦C.
In particular, the electromagnetic shielding behavior of 3D-printed samples remains to be investigated.

Our previous research focused on the development of nanocomposite filaments within
carbonaceous nanofillers (i.e., graphene, carbon nanotube, and carbon black) suitable for the FFF
technique with characterizations of the structure and physical properties [22,23,37–39]. Both graphene
and carbon nanotubes were successfully utilized in the FFF process, determining positive effects at
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different levels [37,39]. The incorporation of CNT provided not only a high increase in electrical
conductivity, but also a severe increase in the viscosity of materials that consequently required a
high-temperature FFF process (280 ◦C). On the other hand, GNP was found not effective for resistivity
reduction, but GNP/ABS nanocomposites could maintain better processability due to their relatively
higher melt flow index. In our previous work, we concluded that proper combinations of CNT and
GNP at a suitable fraction (e.g., 6 wt.% in the hybrid) could offer a possible compromise between
relatively easy processability and an acceptable enhancement of performance (i.e., mechanical and
specific electrical properties) for applications where polymeric materials with low electrical resistivity
are required [40].

The present work focuses on the preparation and characterization of ABS nanocomposites based
on a hybrid composition of GNP and CNT, suitable for FFF 3D printing. In a preliminary investigation,
the total amount of nanofiller of nanocomposites fixed at 6 wt.% with the variation of GNP/CNT relative
ratio was produced by compression molding. Optimal compositions were selected for extrusion and
the FFF technique, and the produced single-filler and hybrid nanocomposites were characterized under
mechanical, electrical, and electromagnetic interference shielding testing.

2. Materials and Methods

2.1. Materials

Acrylonitrile butadiene styrene (ABS) Sinkral® F322 (melt flow rate of 14 cm3/10 min at
220 ◦C/10 kg; density of 1.04 g/cm3) used in this study was supplied by Versalis S.p.A. (Mantova,
Italy) [41]. Before processing, ABS pellets were dried at 80 ◦C in a vacuum oven for at least
2 h. The selected carbon nanoparticles, graphene nanoplatelets and carbon nanotubes, are
presented in Table 1 with details of their dimensions and physical characteristics according to
the manufacturer datasheet.

Table 1. Properties of commercial grades of graphene nanoplatelets (GNPs) and multi-walled carbon
nanotubes (CNTs) according to the manufacturer.

Nanoparticle Length/Width
(µm)

Diameter/Thickness
(nm)

Surface
Area

(m2/g)

Carbon
Purity

(%)

Density
(g/cm3) Manufacturer

xGnP-M5 5 6–8 120–150 >99.5 2.06 ± 0.03 * XG sciences, USA [42]
MWCNT-NC7000 1.5 9.5 250–300 >90 2.15 ± 0.03 ** Nanocyl, Belgium [43]

* Data extracted from Reference [44]; ** data extracted from Reference [39].

The basic quality assessment data of nanofillers are available in the technical data sheets for
GNP [42] and CNT [43], as well as in some literature publications. In particular, Raman spectra and
X-ray Diffraction (XRD) characterization were reported for GNP [42,45] and CNT [46]. TEM images of
both GNP and CNT were also illustrated in our previous publication [40]. Moreover, TEM micrographs
of MWCNT-NC7000 in an ABS nanocomposite evidenced a certain level of orientation in filaments [47].

2.2. Material Processing and Sample Preparation

2.2.1. Compounding

Various GNP/CNT ratio nanofillers at a total concentration fixed at 6 wt.%, as detailed in Table 2,
were mixed with neat ABS by melt compounding in a counter-rotating Thermo-Haake Polylab Rheomix
internal mixer (Thermo Haake, Karlsruhe, Germany) at a temperature of 190 ◦C, with a rotor speed of
90 rpm, for 15 min. Neat ABS was also processed under the same conditions.
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Table 2. Designation and formulation of acrylonitrile butadiene styrene (ABS) hybrid nanocomposites
at different GNP/CNT ratios.

Sample ABS (wt.%) GNP (wt.%) CNT (wt.%) GNP/CNT Relative Ratio

ABS 100 0 0 0:0
GNP/CNT (100:0) 94 6.0 0.0 100:0
GNP/CNT (90:10) 94 5.4 0.6 90:10
GNP/CNT (70:30) 94 4.2 1.8 70:30
GNP/CNT (50:50) 94 3.0 3.0 50:50
GNP/CNT (30:70) 94 1.8 4.2 30:70
GNP/CNT (10:90) 94 0.6 5.4 10:90
GNP/CNT (0:100) 94 0.0 6.0 0:100

2.2.2. Compression Molding (CM)

Compounded batches of about 50 g were produced for each composition. The compounded
materials were hot-pressed at 190 ◦C in a Carver Laboratory press (Carver, Inc., Wabash, IN, USA)
for 10 min under a pressure of 3.9 MPa to obtain square plates with dimensions 160 × 160 × 1.2 mm3

(for mechanical and resistivity tests) and 120 × 120 × 2 mm3 (for electromagnetic interference shielding
effectiveness (EMI SE) analysis).

2.2.3. Filament Extrusion

Compounded materials were also used to feed a Thermo Haake PTW16 intermeshing co-rotating
twin-screw extruder produced by Thermo Haake, Karlsruhe, Germany (screw diameter = 16 mm; L/D
ratio = 25; rod die diameter 1.80 mm). The processing temperature profile gradually increased from T1

= 180 ◦C to T2 = 205 ◦C, T3 = 210 ◦C, T4 = 215 ◦C, and T5 = 220 ◦C (rod die). The screw rotation speed
was fixed at 5 rpm, and collection rate was regulated (about 1.0 m/min) by using a take-up unit Thermo
Electron Type 002-5341 in order to obtain a final diameter of the extruded filament of 1.75 ± 0.05 mm
(see Figure 1).
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diameter 0.40 mm; bed temperature 110 °C; layer height 0.20 mm; raster angle (0°/0°) for HC and PC 

Figure 1. Filaments of neat acrylonitrile butadiene styrene (ABS), and graphene nanoplatelet
(GNP)/multi-walled carbon nanotube (CNT) (100:0), GNP/CNT (50:50), and GNP/CNT (0:100)
nanocomposites at 6 wt.% of nanofiller.

2.2.4. FFF Printed Sample Preparation

The 3D-printed specimens were manufactured by a prototype 3D printer for high-temperature
processing, Sharebot HT Next Generation desktop 3D printer (Sharebot NG, Nibionno, LC, Italy), fed
with the filaments extruded as described in the previous paragraph. The 3D-printed samples were
built in three configurations, horizontal concentric (HC), horizontal 45◦ angle (H45), and perpendicular
concentric (PC), as detailed in our previous publication [39]. In summary, all the specimens were
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3D-printed using the following printing parameters: object infill 100%; no raft; nozzle diameter
0.40 mm; bed temperature 110 ◦C; layer height 0.20 mm; raster angle (0◦/0◦) for HC and PC and
raster angle (+45◦/−45◦) for H45; infill speed 40 mm/s for HC and H45 and 16 mm/s for PC specimens.
The 3D-printed parts were manufactured at a nozzle temperature of 280 ◦C for the CNT nanocomposite,
and 250 ◦C for the ABS matrix, GNP, and hybrid GNP/CNT nanocomposites.

2.3. Testing Techniques

2.3.1. Scanning Electron Microscopy (SEM)

Nanocomposites were fractured in liquid nitrogen and their representative fracture surfaces at
different levels of magnification were observed by a Carl Zeiss AG Supra 40 field-emission scanning
electron microscope (FE-SEM) (Carl Zeiss AG, Oberkochen, Germany) at an acceleration voltage of
5 kV.

2.3.2. Melt Flow Index (MFI)

The MFI measurements were performed according to the ASTM D 1238 standard (procedure A),
using a Kayeness Co. model 4003DE capillary rheometer (Morgantown, PA, USA), at 220 ◦C/10 kg
with a pre-heating and compaction time of about 5 min on samples with a mass of about 5 g cut from
compression molded plates.

2.3.3. Tensile Test

Uniaxial tensile tests were performed at room temperature using an Instron® 5969
electromechanical tester (Norwood, MA, USA) equipped with a 50-kN load cell. Strength and
strain at break values were determined at a crosshead speed of 10 mm/min as an average of at least
three replicates. Three categories of samples were investigated: (1) compression molded (CM) samples
ISO 527 type 1BA dumbbell (gauge length 30 mm; thickness 1.2 mm); (2) filaments (gauge length
100 mm; diameter 1.75 mm); (3) 3D-printed samples (HC, H45, and PC), ISO 527 type 5A dumbbell
(gauge length 25 mm; thickness 2 mm).

The elastic modulus of CM and 3D-printed specimens was evaluated at a crosshead speed of
1 mm/min using an electrical extensometer Instron® model 2620-601 (Norwood, MA, USA) with a
gauge length of 12.5 mm. The elastic modulus of the filament was measured at a crosshead speed of
10 mm/min without an extensometer with a gauge length of 100 mm, taking the system compliance
into account. According to the ISO 527 standard, the elastic modulus was determined as a secant value
between strain levels of 0.05% and 0.25%.

2.3.4. Electrical Resistivity Test

For samples with an electrical resistivity higher than 107 Ω·cm, the volume resistivity ρ was
determined according to ASTM D257 using a Keithley 6517A electrometer/high-resistance meter
(Beaverton, OR, USA) and an 8009 resistivity test fixture at room temperature. In this test, a constant
voltage of 100 V was applied to square samples of 64 × 64 × 1.2 mm3.

For moderately conductive materials (ρ < 107 Ω·cm), the electrical resistivity test was measured
according to the ASTM D4496-04 standard with a four-point contact configuration. Each specimen was
subjected to a voltage of 5 V generated by a direct current (DC) power supply IPS303DD produced
by ISO-TECH (Milan, Italy). Simultaneously, the current flow on the samples was recorded between
external electrodes by using an ISO-TECH IDM 67 Pocket Multimeter electrometer (ISO-TECH, Milan,
Italy). Compression molding (CM), filaments, and 3D-printed samples were tested with a length of
25 mm and different cross-section (rectangular specimens 6 × 1.2 mm2 for CM and 6 × 2 mm2 for
3D-printed sample; diameter of 1.75 mm for filament). Average values of resistivity from at least three
replicates were reported. A conductive silver paint was applied to the surface of 3D-printed samples in
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order to obtain good electrical contact. The electrical volume resistivity of the samples was determined
by Equation (1).

ρ = R×
A
L

(1)

where R is the electrical resistance, A is the is the cross-section of the specimen, and L is the distance
between the internal electrodes (i.e. 3.69 mm). All the reported electrical conductivity and resistivity
values were volume electrical conductivity and volume resistivity, taking into account the thickness
of samples.

2.3.5. Electromagnetic Interference Shielding Effectiveness (EMI SE)

The electromagnetic interference shielding capabilities of CM and 3D-printed samples were
measured using an Agilent Technology PNA series network analyzer (N5230C Agilent PNA-L, Santa
Clara, CA) and a standard rectangular waveguide in the X-band frequency range (8.2–12.4 GHz).
The analysis was performed on compression molded and FFF samples with a dimension 45 × 45
× 2 mm3, and the S-parameters (S11, S22, S12, S21) were recorded over the X-band frequency range,
as detailed in the literature [23,44]. The contributions of reflection (SER) and absorption (SEA) to
the total EMI SE of the composites were investigated, while the effect of multiple reflections (SEM)
was neglected. At least three specimens were tested for each sample, and the standard deviations
were calculated.

3. Results and Discussions

3.1. Melt Flow Index and Morphology

The flow properties of hybrid nanocomposite formulations at a fixed total amount of filler
(6 wt.%) as a function of the different fraction ratios is presented in Figure 2. The MFI values of
nanocomposites significantly decreased with the CNT content. By optimizing the enhancement of
properties (mechanical and electrical properties) and processability, the selected composition of 50:50
of 6 wt.% of hybrid nanocomposite was extruded into filaments for FFF. It is worthwhile to note that
the GNP/CNT (50:50) nanocomposite could be 3D-printed at 250 ◦C, whereas the GNP/CNT (0:100)
nanocomposite required a processing temperature of 280 ◦C.
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The SEM pictures of the fracture surface of GNP/CNT (50:50) nanocomposites as obtained from
various processes including compression molding, filament extrusion, and 3D printing, are shown in
Figure 3. SEM figures of compression molded plates (see Figure 3a1–a3) evidence a poor adhesion level
between graphene and ABS. The effect of the two processing steps of compounding and extrusion,
and the quality of carbon nanotubes and graphene dispersion into the ABS matrix were evaluated from
the fracture surface of the GNP/CNT (50:50) nanocomposite filament by SEM analysis, as depicted
in Figure 3b1–b3. Some small voids can be observed in Figure 3b1, and, at higher magnification,
some microvoids can be evidenced near the filler, as documented by Figure 3b2. In particular,
the graphene nanoplatelets appear to be oriented mostly perpendicular to the fracture plane of the
filament, as depicted in Figure 3b2,b3. Similar to the filament, 3c1–c3 show that, in FFF, the graphene
nanoplatelets for GNP/CNT (50:50) HC parts appear to be oriented mostly perpendicular to the fracture
plane and, therefore, most likely oriented along the loading direction of dumbbell specimens. It can,
therefore, be inferred that, during extrusion, the graphene nanoplatelets are forced to align along the
extrusion direction of the filament, and, during the following FFF process, this orientation is then
maintained in each single microfilament during the layer deposition.
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Figure 3. SEM micrographs at increasing magnification of GNP/CNT (50:50) nanocomposites produced
by compression molding (a1–a3), filaments (b1–b3), and fused filament fabrication (FFF) horizontal
concentric (HC) samples (c1–c3).

3.2. Tensile Properties

The tensile properties of hybrid nanocomposites with GNP/CNT at 6 wt.% obtained from
compression molding are presented in Figure 4. The stiffness and strength of GNP/CNT hybrids at
various mixture ratios were found superior to those of pure ABS. In particular, the elastic modulus of
nanocomposites linearly increased with the amount of GNP content as shown in Figure 4a. For example,
single-filler CNT and GNP nanocomposites evidenced elastic modulus improvements of 23% and
47%, respectively, while the hybrid nanocomposites with a ratio of 50:50 exhibited 37% improvement.
On the other hand, the strength of nanocomposites increased with CNT content, as shown in Figure 4b.
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From Figure 4c,d, the strain at break and tensile energy to break of GNP/CNT (0:100) was slightly
higher than that of GNP/CNT (100:0) nanocomposites, and the GNP/CNT (50:50) specimen revealed
the highest strain at break in comparison with the other nanocomposites. Some studies reported a
synergistic effect for hybrid carbon nanotube/graphene nanocomposites at a low concentration of
1 wt.% nanofiller [29,30,34]. On the contrary, our results suggest no evident synergistic effects on
tensile modulus and strength, probably due to the higher concentration of nanofiller.Polymers 2019, 11, x FOR PEER REVIEW 8 of 21 

 

ABS 100:0 90:10 70:30 50:50 30:70 10:90 0:100
2000

2500

3000

3500

GNP/CNT relative ratio (%)

 

 

El
as

tic
 m

od
ul

us
 (M

Pa
)

ABS 100:0 90:10 70:30 50:50 30:70 10:90 0:100
40

42

44

46

48

50

GNP/CNT relative ratio (%)

St
re

ng
th

 (M
Pa

)

  
 (a) (b) 

ABS 100:0 90:10 70:30 50:50 30:70 10:90 0:100
2.5

3.0

3.5

4.0

25

30

35

40

45

GNP/CNT relative ratio (%)

St
ra

in
 a

t b
re

ak
 (M

Pa
)

 
ABS 100:0 90:10 70:30 50:50 30:70 10:90 0:100

0.0

0.5

1.0

9

12

15

GNP/CNT relative ratio (%)

TE
B

 (M
J/

m
3 )

  
 (c) (d) 

Figure 4. Tensile properties of ABS and various GNP/CNT hybrid nanocomposites with a total 
nanofiller amount of 6 wt.% produced by compression molding: (a) elastic modulus, (b) strength, (c) 
strain at break, and (d) tensile energy to break (TEB). Representative stress–strain curves are shown 
in Figure S1a (Supplementary Materials). 

The tensile properties of filament and 3D-printed samples including elastic modulus, strength, 
and strain at break are plotted in Figure 5. The ductility properties of nanocomposite filaments were 
significantly reduced with respect to neat ABS. In addition, it is worthwhile to note that the elastic 
modulus of the 50:50 hybrid nanocomposites was higher than that of single CNT nanocomposites, 
whereas the strength and strain at break of the hybrid composite filament were slightly lower than 
for pure CNT nanocomposites, and the sample was fractured before the yield point. The tensile 
properties of 3D-printed (HC and H45) samples showed a similar tendency to the sample produced 
by compression molding and to the filaments. In particular, Figure 5 evidences that the elastic 
modulus of hybrid nanocomposites of HC and H45 samples was further increased in comparison 
with the pure CNT nanocomposites; on the other hand, strength and strain at break of this material 
(50:50) were slightly reduced with respect to the single CNT nanocomposites. A different behavior 
was observed for FFF samples produced with a PC build orientation, for which the strength and 
strain at break of the GNP/CNT (50:50) hybrid and (0:100) were significantly reduced compared to 
neat ABS. Moreover, it should be noted that more brittle behavior of all the PC samples existed, 
almost independently of the GNP/CNT composition, due to the weakness of bond properties at the 
cross-sections. In previous work, PLA nanocomposites filled with various GNP/CNT ratios at 6 wt.% 
used in 3D printing and processing showed a synergistic effect on mechanical properties. In 
particular, hybrid nanocomposites evidenced a higher elastic modulus and hardness compared with 
single GNP and CNT nanocomposites at the same nanofiller concentration, hypothesizing that the 

Figure 4. Tensile properties of ABS and various GNP/CNT hybrid nanocomposites with a total nanofiller
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break, and (d) tensile energy to break (TEB). Representative stress–strain curves are shown in Figure
S1a (Supplementary Materials).

The tensile properties of filament and 3D-printed samples including elastic modulus, strength,
and strain at break are plotted in Figure 5. The ductility properties of nanocomposite filaments were
significantly reduced with respect to neat ABS. In addition, it is worthwhile to note that the elastic
modulus of the 50:50 hybrid nanocomposites was higher than that of single CNT nanocomposites,
whereas the strength and strain at break of the hybrid composite filament were slightly lower than
for pure CNT nanocomposites, and the sample was fractured before the yield point. The tensile
properties of 3D-printed (HC and H45) samples showed a similar tendency to the sample produced by
compression molding and to the filaments. In particular, Figure 5 evidences that the elastic modulus of
hybrid nanocomposites of HC and H45 samples was further increased in comparison with the pure
CNT nanocomposites; on the other hand, strength and strain at break of this material (50:50) were
slightly reduced with respect to the single CNT nanocomposites. A different behavior was observed
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for FFF samples produced with a PC build orientation, for which the strength and strain at break of
the GNP/CNT (50:50) hybrid and (0:100) were significantly reduced compared to neat ABS. Moreover,
it should be noted that more brittle behavior of all the PC samples existed, almost independently of the
GNP/CNT composition, due to the weakness of bond properties at the cross-sections. In previous work,
PLA nanocomposites filled with various GNP/CNT ratios at 6 wt.% used in 3D printing and processing
showed a synergistic effect on mechanical properties. In particular, hybrid nanocomposites evidenced
a higher elastic modulus and hardness compared with single GNP and CNT nanocomposites at the
same nanofiller concentration, hypothesizing that the long tortuous CNTs prevent GNP aggregation
and bridge adjacent graphene, leading to a more efficient network and better reinforcing effects in the
matrix [46].
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Figure 5. Quasi-static tensile properties of extruded filaments and FFF samples (HC, horizontal 45◦

angle H45, and perpendicular concentric (PC)) of ABS and its nanocomposite: (a) elastic modulus,
(b) strength, and (c) strain at break. Representative stress–strain curves are shown in Figure S1b–e
(Supplementary Materials).

3.3. Electrical Resistivity

Following the volume electrical measurements, the results of bulk resistivity measurements of
the samples containing GNP and CNT nanofillers are reported in Figure 6. From this set of data, it is
possible to understand that, upon increasing the CNT relative amount, the resistivity decreased with a
nonlinear trend, because of the synergistic effect on electrical resistivity due to the presence of both
nanofillers. With a total nanofiller content of 6 wt.%, the nanocomposite required at least a GNP/CNT
ratio of 70:30 to have a low electrical resistivity of about 13 Ω·cm (with an effective CNT content of



Polymers 2020, 12, 101 10 of 20

1.8 wt.%). On the other hand, single-filler nanocomposite samples loaded only with 2 wt.% of CNT
exhibited an electrical resistivity of 30 Ω·cm [40]; thus, the synergistic effect of GNP in hybrids appears
evident. On the other hand, only a small synergistic effect in PLA nanocomposite was reported by
Ivanov et al. [31], when combining GNP and CNT at ratios of 3 wt.% GNP/3 wt.% CNT and 1.5 wt.%
GNP /4.5 wt.% CNT on electrical conductivity, with no effect on the thermal conductivity.Polymers 2019, 11, x FOR PEER REVIEW 10 of 21 
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ability of materials from electromagnetic waves. Figure 8 shows the representative plots of EMI SE 
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produced by compression molding.

The electrical resistivity of single GNP, single CNT, and 50:50 GNP/CNT at 6 wt.% with different
processing is plotted in Figure 7. The nanocomposite filled with only GNP was an insulating material,
having a resistivity higher than 1013 Ω·cm, independent of the processing. The resistivity of GNP/CNT
(50:50) hybrid nanocomposites was 8.45 Ω·cm, slightly higher than that of the nanocomposite with only
CNT (ρ = 4.1 Ω·cm), analogously to the correspondent compression molded samples. Moreover, much
higher resistivity of GNP/CNT (50:50) hybrid nanocomposites was determined for FFF samples, at
about 4.2 × 105 Ω·cm, 1.5 × 105 Ω·cm, and 1.1 × 104 Ω·cm for HC, H45, and PC, respectively. Following
these results, nanocomposite FFF plates with 6 wt.% of CNT were successfully produced for strain
monitoring applications [47].
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3.4. Electromagnetic Interference Shielding Effectiveness (EMI SE)

Electromagnetic interference shielding effectiveness (EMI SE) is determined as the shielding ability
of materials from electromagnetic waves. Figure 8 shows the representative plots of EMI SE expressed
in decibel (dB) in the frequency range from 8 to 12.4 GHz of the neat ABS and various single GNP,
single CNT, and hybrid (50:50) nanocomposites at 6 wt.% produced by compression molding. The EMI
SE of all these samples was almost independent of the frequency. The higher shielding effectiveness
was achieved in the order of GNP/CNT (0:100) > (50:50) >> (100:0) > ABS samples. These results show
a good correlation to electrical volume resistivity. Materials for EMI shielding purposes are generally
targeted to have a minimum of −20 dB of attenuation, because, at these values of shielding, more than
99% of the incident wave is attenuated, ensuring that electronic equipment does not generate or is
not affected by electromagnetic interference [48,49]. Therefore, it is interesting to note that samples
containing 6 wt.% of CNT and hybrid (50:50) nanofillers could reach EMI SE levels of −46 dB and
−31.7 dB, respectively, which meet the EMI SE levels required for commercial applications.
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Figure 8. Electromagnetic interference shielding effectiveness (EMI SE0 of neat ABS, as well as single
and hybrid nanocomposites, produced by compression molding with a total filler content of 6 wt.%:
(a) representative curves and (b) influence of absorption SEA and reflection SER mechanisms.

The average values of reflection and absorption contributing in the frequency range from
8.2–12.4 GHz are compared in Figure 8b. It is evident that the shielding absorption contribution SEA of
composites containing carbon nanotubes was higher than that of the reflection, i.e., SEA > SER. On the
other hand, the dominant shielding mechanism for ABS/graphene composites was reflection, due to the
platelet-shaped GNP that provided a higher surface area for interaction with the electromagnetic waves.

Figure 9a–c show the representative plots of EMI SE of the neat ABS and various single GNP, single
CNT, and hybrid (50:50) nanocomposites at 6 wt.% produced by FFF at different build orientations in
the frequency range from 8 to 12.4 GHz. The nanocomposites with CNT show a slight influence of the
shielding effectiveness on the frequency in the X-band. Accordingly, EMI SE responses were found to be
a function of both the type of filler and the build orientation of the specimens. The shielding effectiveness
decreased in the following order: GNP/CNT (0:100) > (50:50) >> (100:0) > ABS, independently of the
build orientation of the specimens. These results show the same tendency as the electrical volume
resistivity. Regarding the build orientation, it can be observed that the specimens prepared along the
PC build orientation exhibited a better attenuation (of the electromagnetic radiation). For instance,
the total EMI SE of the carbon nanotube-based composite built along PC was around −25.3 dB,
whereas the same composite built along HC and H45 exhibited attenuation of −14.4 and −15.3 dB,
respectively. Similar differences can also be observed for hybrid composites, with EMI SE values of
−16.1, −11.3, and −12.7 dB for PC, HC, and H45, respectively. On the other hand, ABS/GNP composites,
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directly dependent on their high level of resistivity, revealed poor values of attenuation, near −4.5 dB,
independent of the build direction.Polymers 2019, 11, x FOR PEER REVIEW 12 of 21 
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Figure 9. Representative curves of EMI SE of hybrid nanocomposite samples produced by FFF
three-dimensional (3D) printing: (a) HC, (b) H45, and (c) PC.

The average values of reflection and absorption contributions in the frequency range of
8.2–12.4 GHz are reported in Figure 10. The results of FFF samples regardless of the build orientation
were analogous to those of compression molded samples. In fact, the shielding absorption contribution
in nanocomposites containing carbon nanotubes was higher than that of the reflection, whereas the
dominant shielding mechanism was reflection for ABS/graphene composites.

The relationship between the decrease in resistivity and the correspondent effect of increasing
the magnetic shield after the addition of carbonaceous fillers is summarized in Figure 11. The better
performance of CNT and GNP/CNT hybrid nanocomposites, with reduced resistivity and the
correspondent higher EMI SE, is quite evident. The samples produced by compression molding
evidence better results than those obtained from 3D printing.
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3.5. Comparison of the Results to Literature Data

This paragraph summarizes the main results of these studied GNP/CNT nanocomposites,
and compares their values with some relevant literature data. Figure 12 shows the processability (melt
flow index), resistivity, electromagnetic shielding, and tensile properties of graphene, carbon nanotube,
and hybrid nanocomposites at 6 wt.% from compression molding. It is interesting to observe that the
GNP/CNT (50:50) samples were a good compromise between the decrease in processability and the
increase in mechanical, electrical resistivity, and electromagnetic properties. Analogous pictures were
found for FFF samples produced with different build orientation, as shown in Figure S2 (Supplementary
Materials). In particular, PC samples exhibited better conductive and EMI SE properties with respect
to HC and H45 samples, but lower mechanical properties.
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and 50:50 hybrid nanocomposites with respect to ABS matrix. Spider plots of FFF samples are reported
in Figure S3 (Supplementary Materials) for comparison.

The summary of the main properties of GNP/CNT hybrid nanocomposites at 6 wt.% is also
reported in Table S1 (Supplementary Materials). For the purpose of quantitative evaluation of the effect
of GNP/CNT relative ratio, we can determine comparative parameters that take into consideration
some specific properties important for applications. In particular, the properties of nanocomposites
such as the stiffness, the processability, and the electrical resistivity should be taken into account.
Hence, an interesting merit parameter PE,M,ρ was recently defined [40]. From Figure S2 (Supplementary
Materials), the PE,M,ρ parameter assumes the highest value at 50:50 and 70:30 GNP/CNT relative ratios.

A final comparison of properties of the thermoplastic nanocomposites presented in this study
and some correspondent engineering polymers containing similar types of carbon nanoparticles is
detailed in Table 3. The processing techniques and the comparative values could be useful for ranking
the various nanocomposites in terms of dependence on the required applications. The addition of
carbonaceous nanofillers is reported to provide beneficial effects in reinforcement and in electrical
performances of the various thermoplastics, such as ABS, ABS/polycarbonate (PC), PLA, polybutylene
terephthalate (PBT), polyamide 12 (PA12), PHA (polyhydroxy alkanoate), and PEEK. CNT provides
a significant increase in electrical and electromagnetic shielding properties, much higher than GNP
with a similar amount of filler. For instance, on ABS/CNT composites with 5 wt.% of filler content,
electromagnetic shielding of −38.0 dB at 8.0–12.0 GHz and electrical conductivity values of and
2.0 × 10−3 S/cm were reached [50]. An EMI SE value of −60 dB at 8.0–12.0 GHz and conductivity
of 0.166 S/cm for ABS composites were achieved by adding 15 wt.% of graphene nanoplatelets [51].
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The properties of the products from FFF show sometimes higher properties than those produced by
compression molding. Spinelli et al. [33] produced PLA nanocomposites containing 12 wt.% of GNP,
CNT, and their mixing for 3D printing. The 3D-printed parts exhibited improved electrical conductivity
up to 4.54 S/m, 6.57 S/m, and 0.95 S/m respectively. EMI SE values in the frequency range 26–37 GHz of
samples also increased from 0.20 dB of unfilled PLA up to −13.4 dB for GNP/CNT (1:1) nanocomposites.
However, taking into consideration the Tg of the PLA matrix, a specific application temperature is
in the range 20–50 ◦C, which is relatively lower than that of ABS (up to 80–90 ◦C). Another study
reported ABS-based nanocomposites with the presence of hybrid carbon nanotube/carbon black (1:1)
of 3 wt.% fillers from 3D printing with an EMI SE value of −8 dB in the range 8.2–12.4 GHz [22].
For high-performance thermoplastics, 3D-printed PEEK filled with 7 wt.% of a GNP/CNT (4:3) mixture
demonstrated electrical conductivity of about 1.0× 10-6 S/cm, but no electromagnetic shielding behavior
was reported [35]. In our work, the ABS matrix was incorporated at 6 wt.% of GNP, CNT, and GNP/CNT
(50:50) composites for 3D printing with EMI SE values in the frequency band 8.2–12.4 GHz of −4.4,
−15.3, and −12.7 dB, respectively.
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Table 3. Comparison of selected properties of ABS nanocomposites studied in this research with respect to other carbon-based engineering polymers.

Matrix Type of Nanofiller Nanofiller Process Technique * Modulus ** Strength ** Conductivity (S/cm) EMI SE
References

Content Thickness (-dB)

Graphene

ABS GNP nanosheet 0.13 vol.% SM/CM - - 1.0 × 10−3 - - [52]
ABS C18-graphene 1 wt.% SM/SC +18% +38% − - - [53]
ABS GNP nanosheet 2 wt.% SM/CM +48% +41% − - - [54]
ABS Graphite 4.9 vol.% MM/CM - - 2.0 × 10−1 - [55]
ABS GO 5.6 wt.% SM/3DP - - 1.1× 10−5 - - [56]
ABS Graphite 15 wt.% MM/CM - - 1.6 × 10−1 3 mm 60 at 8.0–12.0 GHz [51]
ABS Graphite 40 vol.% MM/IM +96% −19% − - - [57]

ABS/PC GNP 3 wt.% MM/IM +30% +15% − - - [58]
PLA r-GO 6 wt.% MM/3DP +36% +74% 4.7 × 100 - [59]
PLA GNP 6 wt.% MM/3DP - - 8.4 × 10−5 - - [31]
PLA GNP 12 wt.% MM/3DP - - 6.3 × 10−2 10 mm 10.2 at 30 GHz [33]
PBT GNP 8.4 vol.% SM/3DP - - 4.0 × 10−2 - - [60]
PA12 Graphene 5 wt.% MM/CM - - 2.0 × 10−2 - - [61]

Carbon Nanotubes

ABS CNT 3 wt.% MM/CM - - 10−2 2 mm 10 at 8.2–12.4 GHz [22]
ABS CNT 5 wt.% Solid mixing/CM - - 2.0 × 10−3 2.8 mm 38.0 at 8–12 GHz [50]
ABS CNT 6.1 vol.% SM/CM - - 1.0 × 100 - - [62]
PLA CNT 12 wt.% MM/3DP - - 4.5 × 10−2 10 mm 10.2 at 30 GHz [33]
PLA CNT 6 wt.% MM/3DP - - 2.1 × 10−4 - - [31]

PHAs f-MWCNT 1 wt.% MM/extrusion +33% +102% 1.0 × 10−7 - - [63]
PA12 CNT 5 wt.% MM/CM - - 1.4 × 10−1 - - [61]
PBT CNT 3.5 vol.% SM/3DP - - 2.5 × 10−1 - - [60]

Carbon Black

ABS CB 3 wt.% MM/CM - - 10−7 2 mm 4 at 8.2–12.4 GHz [22]
ABS CB 15 wt.% MM/3DP - - 3.4 × 10−4 - - [64]

Hybrids

ABS CB/CNT 3 wt.% MM/3DP - - 10−3 2 mm 8 at 8.2–12.4 GHz [22]
PLA GNP/CNT 12 wt.% MM/3DP ~20% - − - - [46]
PLA GNP/CNT 12 wt.% MM/3DP 46% -21% 2.2 × 10−3 - - [65]
PLA GNP/CNT 6 wt.% MM/3DP - - 5.9 × 10−2 - - [31]
PLA GNP/CNT 12 wt.% MM/3DP - - 9.5 × 10−3 10 mm 13.5 at 30 GHz [33]

PEEK GNP/CNT 7 wt.% MM/3DP ~ +11% ~ +2% ~1.0 × 10−6 - - [35]

ABS - 0 MM/3DP 2308 MPa 41.1 MPa 1.6 × 10−16 2 mm 2.7 at 8.2–12.4 GHz This study
ABS GNP 6 wt.% MM/3DP +38% −1% 1.9 × 10−15 2 mm 4.4 at 8.2–12.4 GHz This study
ABS CNT 6 wt.% MM/3DP +19% +5% 6.8 × 10−6 2 mm 15.3 at 8.2–12.4 GHz This study
ABS GNP/CNT 6 wt.% MM/3DP +38% −4% 2.0 × 10−2 2 mm 12.7 at 8.2–12.4 GHz This study

* MM is melt mixing; SM is solution mixing; CM is compression molding; IM is injection molding; SC is solution casting; 3DP is three-dimensional printing. ** Relative percentage variation
with respect to the neat polymeric matrix. GO: graphene oxide; r-GO: reduced graphene oxide; f-MWCNT: functionalized multi-walled carbon nanotubes; PC: polycarbonate; PLA:
polylactide;PBT: polybutylene terephthalate; PA12: polyamide 12; PHAs: polyhydroxy alkanoate); PEEK: polyether ether ketone.
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4. Conclusions

The objective of the present work was to develop electrically conductive carbon-based
thermoplastic materials, with good mechanical properties, suitable for 3D printing by fused deposition
modeling. The manufacture of the nanocomposites with a total amont of 6 wt.% of GNP/CNT nanofiller
was performed by direct melt compounding, and various samples with different compositions were
produced either by compression molding or by filament extrusion. A higher CNT content led to lower
resistivity and higher electromagnetic shielding, but lower melt flow index. The GNP/CNT hybrid
nanocomposites showed values of elastic modulus, strength, electrical resistivity, and processability
intermediate to those manifested by nanocomposites filled with either GNP or CNT. Substitution of
GNP by CNT provided a positive effect on the electrical resistivity and an improvement of EMI SE, but a
certain reduction of modulus and flow properties. The electrical conductive filament (ρ = 8.5 Ω·cm)
and FFF parts were achieved after the addition of GNP/CNT content. However, their resistivity
increased after the 3D printing process. GNP/CNT hybrid composition of 6 wt.% carbonaceous
nanocomposites showed a good compromise between processability and enhancement of properties
(mainly mechanical and electrical properties). In agreement with electrical resistivity, EMI SE of
6 wt.% ABS/CNT and 50:50 hybrid ABS nanocomposites resulted as −46 dB and −31.7 dB for plate
samples. The EMI SE of FFF parts was about −14 dB for HC and H45 build orientations and −25 dB
for the PC build orientation for ABS/CNT nanocomposites. Similar EMI SE values of FFF hybrid
nanocomposites were observed, almost independent of the building process, of about −12 dB for HC
and H45, and −16 dB for PC samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/101/s1:
Figure S1. Representative stress–strain curves of neat ABS, and GNP/CNT (100:0), GNP/CNT (50:50), and GNP/CNT
(0:100) nanocomposites: (a) compression molded samples, (b) filaments, (c) HC, (d) H45, and (e) PC samples;
Figure S2. The merit parameter P from Equation (S1) combines and compares the effects of elastic modulus, melt
flow index (220 ◦C), and resistivity of nanocomposites with CNT/GNP 6 wt.% as a function of relative ratio of
CNT (from Table S1); Figure S3. Spider plots of FFF samples with relative comparison of processability (MFI),
resistivity, electromagnetic shielding (EMI SE), and tensile properties of graphene, carbon nanotube, and 50:50
hybrid nanocomposites with respect to the ABS matrix: (a) HC, (b) H45, and (c) PC; Table S1: The summary of
properties of GNP/CNT hybrid nanocomposites.
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