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Abstract: Graphene as an interphase not only improves the mechanical performance of fiber
reinforced polymer composites but also induces functional properties like electrical conductivity,
thus providing the possibility of strain monitoring in real time. At this aim, graphene oxide (GO)
was electrophoretically deposited at different applied potentials on glass fibers to create a uniform
coating and was subsequently chemically reduced to obtain a conductive layer of reduced graphene
oxide (rGO). After the optimization of the deposition process, composite laminates were prepared
by hand lay-up with an epoxy resin, followed by curing in vacuum bag. The deposited rGO
interphase improved the dynamic moduli (storage and loss modulus), the flexural strength (+23%),
and interlaminar shear strength (ILSS) (+29%) of the composites. Moreover, laminates reinforced
with rGO-coated glass fibers showed an electrical resistivity in the order of ~101 Ω·m, with a negative
temperature coefficient. The piezoresistivity of the composites was monitored under flexural loading
under isothermal conditions, and strain/damage monitoring was evaluated at different temperatures
through the change of the electrical resistance with the applied strain.
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1. Introduction

Structural fiber reinforced polymer composites have received wide attention from both academic
and industrial communities for their advantages in several applications because of their high
strength-to-weight ratio, better corrosion resistance with respect to metallic materials, excellent
impact strength, and durability [1]. However, the utmost requirement that is first evaluated for the
applicability of such materials is the mechanical performance, which in turn has a great dependence
on the fiber/matrix interfacial adhesion. In other words, the effective load transfer from the matrix to
the fibers is the primary factor on which the mechanical performance is determined [2]. Researchers
are constantly looking for better design, material selection, and production systems in order to
assure optimal load transfer [3]. In recent years, this issue has been successfully faced by the use of
nanostructured materials dispersed in the matrix or deposited on the fiber surface, which are able to
create a better interphase for the load transfer mechanism [3].

Recent years have seen an enormous rise in the use of nanomaterials in polymer composites,
due to their remarkable effect on the physical properties of the resulting materials [4–9]. The inclusion
of carbonaceous nanomaterials (carbon nanotubes (CNTs), graphene), for example, has successfully
modified the properties of both thermoplastic and thermosetting matrices [10–12], including the
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enhancement of the electrical conductivity [13–15]. In particular, the use of graphene in polymer
composites could lead to the development of multifunctional materials that could be applied for
innovative applications [16–18]. In the case of fiber reinforced polymer composites, several studies
have been conducted to prove the positive impact of nanoparticles in enhancing the mechanical
properties, either by dispersing them in the polymer matrix or depositing nanofillers on the fiber
surface as a fiber/matrix interphase [3,19,20]. In the past, graphene oxide (GO) has been reported to be
extremely effective in not only improving the fiber/matrix load transfer mechanism [21,22], but also in
promoting the use of composite structures in strain monitoring sensors [23,24].

The topic of strain monitoring of structural materials has taken a great deal of attention in the past
decade, mainly because of the possibility to obtain information about the damage evolution within the
materials in real time conditions. Fiber reinforced polymer (FRP) structures, being particularly sensitive
to intrinsic damage mechanisms (i.e., delamination or matrix cracking), are thus ideal candidates
for real time damage monitoring and detection [25]. It is thus clear that the in-situ monitoring of
damage is a useful tool to increase the reliability and lifetime of composite structures, also making
the maintenance of structural components less challenging [26]. In the past, graphene has been used
extensively in polymer composites. Strain monitoring sensitivities up to 16,400 were obtained by using
functionalized graphene nanoplatelets as coating on glass fiber fabric [27]. Moreover, in epoxy matrix,
a gauge factor of around 750 was achieved by the addition of graphene nanoplatelets (GNPs) [24].
Similarly, it was proven that functionalized graphene in polyvinylidene fluoride (PVDF) performed
better as a strain sensor compared to carbon nanotube polymer composite [28].

Recently, fiber reinforced polymer composites have been developed using various “built-in
sensors” that have the capability to monitor their structural health [26]. In particular, carbon fibers
have been used as a multifunctional element, primarily for their structural capabilities as well as for
their elevated electrical conductivity, which qualifies the composite itself for damage monitoring by
the phenomenon of piezoresistivity, i.e. the change of electrical resistance of an element due to an
application of a certain stress (or strain) [29]. In this sense, the use of glass fibers (GF) reinforced
laminates for these applications is strongly limited, because of the intrinsic insulating properties of
both the fibers and the polymer matrix. To achieve elevated electrical conductivity in glass fiber-based
composites, several techniques have been utilized in the past [30–33]. Böger et. al [34] dispersed
carbonaceous nanofillers in an epoxy matrix to perform load and strain monitoring of glass/epoxy
composites. In the same way, Gao et. al [35] utilized multi-walled carbon nanotubes in an epoxy
matrix reinforced with glass fibers, in order to evaluate the mechanisms of damage sensing under
cyclic loading conditions. The difficulty in the dispersion of nanofillers in epoxy matrix arises from the
fact that an increase of the nanofiller loading causes an increase in the viscosity [36,37], thus leading to
processability problems that could potentially impair the mechanical performances of the resulting
materials [38].

In order to overcome these problems, researchers tried to implement a selective deposition of
nanofillers on the fiber surface through various techniques, such as dip coating [27], chemical vapor
deposition (CVD) [39], chemical grafting [40], and electrophoretic deposition (EPD) [41]. EPD has
recently proved to be a practical technique when depositing large amounts of nanosized particles on
various substrates [42–44]. In a recent work, Mahmood et al. [25] investigated the strain monitoring
capability of glass/epoxy composites, in which a graphene interphase was created between the matrix
and the reinforcement through EPD, starting from a GO water suspension with a concentration of
1 mg/mL (equivalent to 0.1 wt%), deposited applying an electrical field of 10 V/cm. GO was then
chemically reduced to reduced graphene oxide (rGO) by lowering the oxygen content as low as 10%
in the rGO sheets. Such continuous deposition on GF provided an improvement of about 70% of the
fiber/matrix interfacial shear strength. Interestingly, the produced rGO based epoxy/glass composites
were characterized by a volume resistivity as low as 4.5 Ω·m. However, in that work, the process
parameters of the EPD were not optimized, and their influence on the physical properties of the coating
and of the resulting composites was not determined.
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On the basis of these considerations, the current work is focused on the investigation of the optimal
parameters of the EPD technology (applied electric field and concentration of GO dispersion required
to create a uniform and continuous deposition of rGO on GF), to develop electrically conductive
glass/epoxy composites. Moreover, considering that no papers can be found in the literature on
the temperature-dependent health monitoring capability of nanomodified hybrid epoxy composites,
the piezoresistive response of the resulting laminates at three different temperatures (i.e., 0 ◦C, 23 ◦C,
and 50 ◦C) was investigated.

2. Materials and Methods

2.1. Materials

A dispersion of 4 mg/mL of graphene oxide in water was purchased from Graphenea SA
(San Sebastian, Spain). According to the producer’s datasheet, this dispersion has a GO monolayer
content of more than 95%. A unidirectional fabric of glass fibers (UT-E500), having a surface density of
500 g/m2, was provided by Gurit (Wattwil, Switzerland). A bicomponent epoxy resin, constituted by
an epoxy base (EC157) and an aminic hardener (W342), was provided by Elantas Europe Srl (Parma,
Italy). As reported in the producer’s datasheet, this system presents a glass transition temperature (Tg)
of around 88 ◦C after a curing cycle of 24 h at room temperature, followed by 15 h at 60 ◦C. All the
materials were used as received.

2.2. Samples Preparation

In the electrophoretic deposition (EPD) process, two electrodes were inserted in a conductive
suspension and connected together using a direct current power supply. GF were mounted on a steel
frame (as shown in Figure 1a) and were placed in front of the anode during EPD, due to the fact that
GO is negatively charged.
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Figure 1. Representative images of glass fibers (GF) (a) as received, (b) after the EPD process,
and (c) after chemical reduction.

Through the application of an electrical potential between the electrodes, GO is forced to migrate
towards the anode, thus depositing on the GF. In order to optimize the EPD parameters, various
concentrations of GO solution (ranging from 0.005 wt% to 0.02 wt%) and different electric field
intensities (from 0.5 to 1.5 V/cm) were applied. In this work, the electric field intensity was defined
as the ratio between the voltage applied and the distance between the electrodes. During the EPD
process, the distance between the electrodes was kept constant at 2 cm, and both sides of the glass
fiber fabric were treated for 5 min. The configuration of the experimental equipment used in the EPD
treatment was taken from the previous work of Mahmood et al. [25], in order to directly compare
the results, while the deposition conditions (i.e., GO concentration and applied electric field) were
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systematically modified. The complete list of the conditions of the electrophoretic deposition of GO on
glass fibers is reported in Table 1.

Table 1. Conditions of electrophoretic deposition of graphene oxide (GO) on glass fibers.

Code. GO Concentration in Water (wt%) Applied Electric Field (V/cm)

0A 0.005 0.5
0B 0.005 1.0
0C 0.005 1.5
1A 0.01 0.5
1B 0.01 1.0
1C 0.01 1.5
2A 0.02 0.5
2B 0.02 1.0
2C 0.02 1.5

After the deposition, the GO-coated fibers were dried in an oven under vacuum at 50 ◦C for at
least 12 h. The surface appearance of both uncoated and coated fabrics can be observed in Figure 1a,b,
respectively. The treated fibers were then subjected to chemical reduction in an environment of
hydrazine hydrate at 100 ◦C for 24 h to reduce GO to rGO. The details of the chemical reduction process
can be found in the previous work of Mahmood et al. [25]. Regardless of the adopted parameters,
the color of the fibers passed from light brown to black (Figure 1c) after the chemical reduction.

Both uncoated and rGO-coated fibers were used to fabricate unidirectional composites, with the
epoxy resin as matrix. A hand lay-up method was adopted, stacking 4 laminae of the glass fabric.
The system was then placed in a vacuum bag to remove the air bubbles and the excess resin. The curing
process was performed according to the indications of the producer (i.e., 24 h at ambient temperature
followed by 15 h at 60 ◦C). In this way, laminates having a dimension of 150 mm × 150 mm × 1.3 mm
were prepared. On the other hand, for the short beam shear test (SBS), 12 laminas were stacked to create
a thicker composite specimens (thickness of about 3.7 mm). The neat epoxy resin was designed as EP
and the uncoated GF reinforced composite was denoted as EP-GF, while the laminate reinforced with
rGO-coated fibers were coded as EP-rGO-GF. It is important to underline that, in the preparation of
the composites, only the fibers coated with an optimized EPD condition (i.e., 2A of Table 1) were used.

2.3. Experimental Techniques

2.3.1. Characterization of the Fibers

The morphological analysis of both the uncoated and coated fibers was performed by scanning
electron microscopy (SEM) using a Zeiss Supra 40 microscope (Zeiss, Oberkochen, Germany). Before
observations, specimens were coated by a platinum/palladium alloy (80:20) thin layer with a thickness
of about 5 nm.

Based on the electrical resistivity values of the investigated materials, two different resistivity
measurement methods were utilized. For uncoated GF, whose resistivity level exceeds 105 Ω·m,
the electrical resistivity was measured using a Keithley 8009 resistivity test chamber (Keithley
Instruments, Cleveland, OH, USA) coupled with a Keithley 6517A high-resistance meter (Keithley
Instruments, Cleveland, OH, USA) at 5 V applied voltage. On the other hand, the electrical resistivity
at 23 ◦C of rGO-coated fibers at different EPD conditions was measured by using a Keithley 6517A
electrometer in 4-point configuration (Keithley Instruments, Cleveland, OH, USA). Three different
fiber strands (width 0.7 cm, length 4 cm) were tested for each sample, applying voltage levels from
0.1 V to 5 V (depending on the electrical resistivity of the fibers).
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2.3.2. Characterization of the Composites

The density of the neat epoxy matrix and of the composites was measured at 23 ◦C by using
a precision balance (Archimede Gibertini E42, Gibertini, Modena, Italy) which had a sensitivity of
10−4 g. The specimens were weighed in air and in ethanol, according to the ASTM standard D792-13.
The density of the GF was measured by using a Micromeritics® Accupyc 1330 helium pycnometer
(Micromeritics Instrument Corporation, Norcross, GA, USA) at ambient temperature 23 ◦C, using a
testing chamber of 3.5 cm3.

The fiber volume fraction (Vf) in the composites was evaluated by using the expression reported
in the following Equation (1):

Vf =
1

1 +
ρ f
ρm

(
1

W f
− 1

) (1)

where ρf and ρm are the densities of the fiber and matrix, while Wf is the fiber weight fraction.
The theoretical density (ρt) of the composite specimens was then estimated using Equation (2):

ρt = ρ f ·Vf − ρm·Vm (2)

where Vm represents the matrix volume fraction.
It is possible to also estimate the volume fraction of the voids (θvoids) in the specimen using

Equation (3):

θvoids =
ρt − ρexp

ρt
(3)

Optical microscope images of the cross section of the composite laminates were obtained through
a Zeiss Axiophot optical microscope (EL-Einsatz 451887, Zeiss, Oberkochen, Germany), equipped with
a Leica DC300 digital camera (Leica Microsystems Ltd., Heerbrugg, Switzerland). The specimens were
polished using abrasive grinding papers with grit size P800, P1200, and P4000, sequentially.

The thermal stability of epoxy and glass/epoxy composites was assessed through
thermogravimetric analysis (TGA) by using a Q5000IR thermobalance by TA Instruments (New Castle,
DE, USA). Around 10 mg and 40 mg of the neat epoxy and of the composites were tested respectively,
under a nitrogen flow of 100 mL/min. The tests were conducted between 25 ◦C and 700 ◦C, at a heating
rate of 10 ◦C/min. The onset degradation temperature (Tonset) was computed by the intersection of
the extrapolated TGA curve and the tangent line of the curve. Temperature corresponding to a weight
loss of 5% (T5%) was also determined. The degradation temperature (Td) was taken as the temperature
associated with the maximum mass loss rate, and the residual mass at 700 ◦C (rm) was also detected.

The viscoelastic behaviour of the composites was evaluated through dynamical mechanical
analysis (DMA), by using a DMAQ800 machine, provided by TA instruments (New Castle, DE, USA),
operating in dual–cantilever mode. Analysis was carried out in a temperature range between 0 and
150 ◦C at a heating rate of 3 ◦C/min and a frequency of 1 Hz.

Flexural mechanical properties of the composite laminates were determined by using an Instron®

5696 universal testing machine (Instron, Norwood, MA, USA), according to ASTM D790 standard.
Rectangular specimens with dimension of 150 mm × 13 mm × 1.3 mm were tested, imposing a
span to depth ratio of 60:1 and 40:1 for the measurement of flexural modulus and flexural strength,
respectively. In order to apply a strain rate of 0.01 mm−1, cross-head speeds of 7.8 mm/min for flexural
modulus evaluation and 3.5 mm/min for flexural strength tests were selected. At least five specimens
were tested for each composition. Interlaminar shear strength (ILSS) values of the composites were
determined through a Short Beam Shear test (SBS), performed according to the ASTM D2344 standard,
by using an Instron® 5969 tensile testing machine. Specimens with dimensions of 22.2 mm × 7.4 mm
× 3.7 mm were tested under 3-point bending configuration at a speed of 1 mm/min. The ILSS was
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determined from the maximum load sustained by the samples (Fmax), by using the expression reported
in the following Equation (4):

ILSS = 0.75 × Fmax

b × h
(4)

where b and h are the width and the height of the specimens, respectively.
The electrical volume resistivity of the EP-rGO-GF composites was tested through a 6-1/2-digit

electrometer (Keithley model 6517A) in a 2-point configuration at three different temperatures (0 ◦C,
23 ◦C, and 50 ◦C) under an applied voltage of 10 V. At least five specimens were tested for each
composition. The piezoresistivity of the EP-rGO-GF composite was measured under flexural loading
at three different temperatures (i.e., 0 ◦C, 23 ◦C, and 50 ◦C) by using an Instron® 5969 tensile
testing machine. Rectangular samples with dimensions of 150 mm × 13 mm × 1.3 mm were
mechanically tested at 3.5 mm/min, simultaneously measuring the electrical resistance through
a Keithley 6517A electrometer under 2 contact points, setting a distance between the electrodes of
30 mm [25]. The temperature was controlled during the tests by conducting the experiments in a
thermostatic chamber. The piezoresitivity of the EP-rGO-GF laminate was thus assessed through the
variation of the relative electrical resistance (∆R/R0, where R0 is the initial resistance at the beginning
of the test) as a function of the applied flexural strain.

3. Results and Discussion

3.1. Characterization of the Fibers

The electrical resistivity of the rGO-coated fabric was measured under a 4-point configuration,
and the most important results are summarized in Table 2. It can be observed that by applying a higher
electric field and/or by using a higher GO concentration, it is possible to reach a decrease of resistivity.
With a GO concentration of 0.005 wt% (0A–0C fibers), it is possible to obtain a resistivity in the order
of ~103 Ω·m, while by increasing the GO amount up to 0.01 wt%, it is possible to produce fibers with a
resistivity of ~102 Ω·m, especially when increasing the applied voltage. A further enhancement of the
GO concentration (i.e., 0.02 wt%) results in a further decrease of the resistivity up to ~101 Ω·m. In this
condition, it is important to underline that an increase of the voltage does not promote a resistivity
decrease. This is the reason why 2A fibers probably represent the best compromise between the
requirements of elevated conductivity and mild deposition conditions. It could be interesting to note
that in our previous papers the EPD process was performed by using a GO water suspension with a
concentration of 1 mg/ml (i.e., 0.1 wt%), applying an electrical field of 10 V/cm [25]. The fibers treated
according to 2A process parameters were then utilized to prepare composite laminates.

Table 2. Electrical volume resistivity of the treated fibers.

Sample Resistivity (Ω·m)

Uncoated GF 1.5 × 1014

0A 6449 ± 241
0B 5439 ± 368
0C 2073 ± 562
1A 1154 ± 146
1B 887 ± 203
1C 222 ± 54
2A 41 ± 7
2B 51 ± 18
2C 52 ± 14

Figure 2a shows the micrographs of the neat glass fibers, while Figure 2b–j reports the micrographs
of the glass fibers coated with rGO under different experimental conditions (the complete list of the
process parameters is reported in Table 1). In comparison to the neat fiber (Figure 2a), GF coated by
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0A, 0B, and 0C parameters (Figure 2b–d) hardly showed any physical deposition of rGO, meaning
that the conditions used to create rGO coating were not satisfactory. This was further confirmed in the
resistivity test of coated GFs discussed above (see Table 2). Similarly, the case of GF coated with rGO
by 1A, 1B, and 1C revealed slightly more deposition, with either grey colored flakes adhered to the
fiber surface and/or some wrinkle features of graphene (ubiquitous phenomenon in two-dimensional
membranes) visible in Figure 2e–g. Further increasing the concentration of the GO dispersion, i.e., 2A,
2B, and 2C, resulted in increased deposition, which then showed a signficant deposition of the rGO
flakes pointed out by arrows in Figure 2h–j. Even if a fine deposition of rGO was observed by these
micrographs, it was not possible to determine the thickness of the deposited layer. For such reasons,
cross-sectional pictures of neat GF and rGO-coated GF (under deposition condition 2A only) were
attempted by SEM and reported in Figure 3.
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In order to visualize the coating thickness on the GF, the neat GF and rGO-coated GF (only
deposited under 2A conditions) were analyzed for their cross-section under SEM. Figure 3a,b show the
neat GF under low and high magnification, and only a few particles (presumably of the sizing of GF)
can be viewed. On the contrary, Figure 3c,d show the flakes of rGO on the GF, either adhered to the GF
or partially hanging from the GF, which also can be seen in Figure 2h–j. These images reveal a very
fine coating of rGO on the GF, deposited under 2A condition. The average thickness of the coating was
measured by taking 5 measurements from one image of fiber and then taking similar measurements
from other fiber images (in this case, 5 images were used in total) using ImageJ software. The average
thickness of rGO coating was found to be about 45 ± 9 nm.
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3.2. Characterization of the Composites

In order to compare the properties of the produced laminates, it is important to evaluate their fiber
content, density, and porosity. The fibers used to create the composite structure were weighed before
composite fabrication with epoxy matrix, and the weight of composite prepared was measured after
epoxy curing. The measured GF density was equal to 2.62 g/cm3. By using the expression reported
in Equation (1), an average fiber volume fraction of about 65 vol% was estimated for both EP-GF
and EP-rGO-GF composites (see Table 3). Table 3 also reports the values of density and porosity of
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neat epoxy, and of the prepared laminates (with either neat or rGO-coated fibers). It is interesting to
note that, through a comparison between the theoretical and experimental (ρe) density values, EP-GF
and EP-rGO-GF laminates present similar porosity values (around 4–5%, considering the associated
standard deviation values).

Table 3. Density, porosity, and fiber content of the prepared composites.

Sample Fiber Fraction
(vol%)

Theoretical Density
ρt (g/cm3)

Experimental
Density ρe (g/cm3)

Void Content
(vol%)

EP - 1.1470 1.1470 ± 0.0014 -
EP-GF 65.0 2.1056 1.9960 ± 0.0068 5.20 ± 0.32

EP-rGO-GF 65.3 2.1095 2.0363 ± 0.0404 3.47 ± 1.91

The cross-sectional view obtained by using optical microscopy of the two tested composites
(EP-GF and EP-rGO-GF) can be seen in Figure 4. Both specimens show a uniform distribution of the
fibers within the matrix, and in the case of the EP-rGO-GF laminate, the rGO interphase cannot be
distinguished because of the very low thickness of the deposited layer. These micrographs show that a
good fiber–matrix interfacial adhesion can be detected in both composites, without the presence of
microstructural defects. It can therefore be concluded that the samples are characterized by a similar
morphology. As documented in a previous paper [45], even when observing the cross sections by SEM,
it was not possible to get a reliable measure of the thickness of the rGO layer.
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Figure 4. Optical microscopy images of (a) EP-GF and (b) EP-rGO-GF composites.

Thermal stability of the composites was evaluated through thermogravimetric analysis (TGA),
and the most important parameters are summarized in Table 4. It can be seen that the addition of
rGO as a continuous interphase does not promote a real improvement of the thermal stability of
the composites. In fact, EP-GF and EP-rGO-GF laminates present similar Tonset, T5%, and Td values.
On the other hand, it has to be considered that the mass loss in these laminates is mainly due to the
degradation of the epoxy matrix, and the rGO coating around the fibers could not hinder the diffusion
of the oxidation process within the samples. In other words, the initial stage of the matrix charring
process is not promoted by the presence of the rGO layer around the glass reinforcement [46].
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Table 4. Results of TGA analysis on neat epoxy and of the relative composites.

Parameter EP EP-GF EP-rGO-GF

T5% 306.6 332.5 346.5
Tonset 335.1 347.0 332.1

Td 346.7 375.7 367.3
rm 7.35 77.4 81.6

T5%: temperature corresponding to 5% weight loss; Tonset: temperature corresponding to initiation of degradation;
Td: temperature corresponding to maximum mass loss rate; rm: residual mass at 700 ◦C.

The thermograms of the storage modulus (E’), loss modulus (E”), and loss tangent (tanδ) are
reported in Figure 5. When compared to the composite with uncoated fibers (EP-GF), EP-rGO-GF
laminate presents slightly higher E’ values for T < Tg. From these plots, it is also interesting to notice
that EP-rGO-GF sample has a lower Tg (about 20 ◦C of difference) with respect to the EP-GF laminate,
as noticed from the peak of loss modulus and of loss tangent plots in Figure 5. This behaviour could
be attributed to the fact that the presence of rGO on the surface of the fibers hinders and/or sets back
the crosslinking process of the matrix during the curing process [47,48]. Moreover, it is worthwhile to
note that the intensity of the loss tangent peak is higher for the EP-rGO-GF sample, thus indicating
a stronger damping capability of these laminates induced by the presence of the rGO coating at the
fiber/matrix interface. A detailed investigation on the interaction between the rGO layer and the glass
fiber surface is reported in a recently published work [49].
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Figure 5. Storage modulus, loss modulus, and loss tangent curves from dynamic mechanical analysis
(DMA) on the prepared composites.
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The flexural properties of the prepared laminates under quasi-static conditions are compared in
Table 5.

Table 5. Flexural properties and interlaminar shear strength (ILSS) values of the prepared composites.

Sample Flexural Modulus (MPa) Flexural Strength (MPa) Flexural Strain at Break (%) ILSS (MPa)

EP-GF 38.2 ± 0.7 687 ± 55 2.1 ± 0.2 44 ± 5
EP-rGO-GF 38.6 ± 0.8 888 ± 22 3.0 ± 0.1 57 ± 13

The elastic modulus is only slightly improved upon rGO coating of the glass fibers, while both
the flexural strength and the strain at break are noticeably improved (+29 % and +43 %, respectively)
compared to EP-GF laminate. This results can be explained considering that the failure mechanism of
the composite laminates is strongly influenced by the fiber/matrix interfacial adhesion level. It can
therefore be assumed that the presence of rGO layer at the interface could promote the stress transfer
mechanism at the interface, thus promoting an increase of the failure properties of the material. In fact,
a remarkable increse of the fiber/matrix adhesion has been measured in similar composites by the
single fragmentation test [22]. For the same reason, it could be also hypothesized that the interlaminar
shear resistance of the laminates could be improved upon rGO coating. In fact, as reported in Table 5,
the ILSS value of EP-GF-rGO laminate are significantly higher than that of the EP-GF samples (+30%).

In order to evaluate the real electrical monitoring capability of the prepared laminates, electrical
resisitivty measurements at three different temperatures (0 ◦C, 23 ◦C, and 50 ◦C) were performed by
using a 2-point configuration. As shown in Figure 6, electrical volume resistivity of the EP-rGO-GF
laminate is comparable to that of the rGO treated fibers (if produced according to 2A parameters
shown in Table 2). This means that the presence of the matrix around the fibers does not substantially
affect the conductivity behavior of the system. Considering the standard deviation values associated
to these measurements, it can be concluded that the electrical resistivity of the laminates is only weakly
influenced by the testing temperature with a slight decreasing trend. Therefore, the electrical behaviour
of the EP-rGO-GF composite is characterized by a negative temperature coefficient (NTC) [50]. On the
basis of the literature information, this behavior could be ascribed to the electron emission between the
continuous interphase of rGO sheets [51–53]. It could be interesting to observe that, in the previous
paper of our group [25], rGO based epoxy/glass composites characterized by a volume resistivity as
low as 4.5 Ω·m were obtained by applying much harsher EPD conditions (i.e., GO concentration in
water suspension of 0.1 wt%, applied electric filed of 10 V/cm).Fibers 2018, 6, x FOR PEER REVIEW  12 of 16 
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Figure 6. Electrical volume resistivity of EP-rGO-GF composite at different temperatures.
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Finally, the strain/damage monitoring capabilities of EP-rGO-GF composites were tested under
flexural conditions at three different temperatures. In Figure 7, the trends of the electrical resistance
variation (∆R/R0) and of the stress as a function of the applied strain are reported. It is interesting to
note that as the temperature increases, the piezoresistivity of the samples is noticeably enhanced.
At 0 ◦C and 23 ◦C, the resistance change is practically negligible until an applied strain of 2%.
For higher strain levels, ∆R/R0 increases until the failure of the specimen occurs. At 50 ◦C, a more
pronounced increase of ∆R/R0 with the strain can be observed, especially in the low deformation
interval. These results can likely be explained by considering the NTC of EP-rGO-GF composites.
In other words, a sample endowed with a higher conductivity is characterized by a better piezoresistive
behaviour, and it could be thus applied for strain monitoring applications.
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4. Conclusions

In this work, glass fibers were treated through electrophoretic deposition by utilizing different
processing parameters. The coated fibers were then subjected to chemical reduction in order to
produce a conductive coating of reduced graphene oxide (rGO) on their surface. The fibers treated
with the optimized parameters (i.e., by using 0.02 wt% of GO solution deposited at 0.5 V/cm)
showed the highest electrical conductivity. These fibers were then utilized to prepare composite
laminates through a hand lay-up technique by using an epoxy resin as matrix. The rGO deposition
on the glass fibers was responsible for the slight increase of the dynamic moduli (E’, E”) of the
composites, coupled with a noticeable enhancement of the flexural strength and of the delamination
resistance. Furthermore, composites with rGO-coated glass fibers showed an electrical resistivity of
about ~101 Ω·m. The EP-rGO-GF laminate was characterized by a good piezoresistive behavior under
flexural conditions, and the strain monitoring sensitivity increased with the testing temperature. It was
therefore demonstrated that, through a proper optimization of the EPD parameters, it is possible to
produce rGO-coated glass fibers that permit the strain/damage monitoring in structural composites
in a wide temperature range. Such findings could find their usefulness in applications where the
temperature variation of structural composites, due to service conditions, could modify their behavior
in terms of strain monitoring response.
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