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Abstract
In this article, innovative electrically conductive polymer nanocomposites based on
poly(butylene terephthalate) (PBT) filled with carbon nanotubes (CNTs) at different
concentrations, to be used in the automotive field, have been investigated. Field
emission scanning electron microscopy (FESEM) analysis revealed how a good
nanofiller dispersion was obtained, especially by using surface treated nanotubes and
by processing these materials using a more restrictive screw configuration. Melt flow
index measurements highlighted that the processability of these nanocomposites was
reduced at elevated filler amounts, even if CNT surface treatment promoted a
partial retention of the fluidity of the neat PBT. Thermal degradation stability was
improved upon the addition of CNT, even at limited filler amounts. Differential
scanning calorimetry measurements evidenced how the presence of CNT slightly
increased both the crystallization temperature and the crystalline fraction of the
materials. The additivation of CNTs promoted a stiffening effect at elevated CNT
contents, associated to an evident embrittlement of the samples. Electrical resistivity
measurements showed that the most interesting results (i.e. 2.6 � 101 O�cm) were
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obtained for nanocomposites with a total filler content of 3 wt%, processed using
the more restrictive screw configuration. For these materials, it was possible to
obtain a rapid surface heating through Joule effect at applied voltages of 12 V.

Keywords
Nanocomposites, carbon nanotubes, functionalization, conducting polymers, mechanical
properties

Introduction

In the last decades, polymer matrix nanocomposites attracted considerable academic and

industrial interest because the addition of inorganic nanostructured materials at limited

concentrations can strongly improve the physical properties of polymer matrices, such as

impact resistance,1 elastic modulus,2 dimensional stability, and thermal degradation

resistance.3–6 In general, polymeric materials are characterized by an elevated electrical

resistance,7 but in the last decades a wide variety of methods have been developed to

reduce it.8–14 One of the most interesting techniques is the additivation of conductive

fillers such as carbon black (CB), CNTs,15,16 graphene,17–22 or metal particles. For

instance, several nanocomposite systems were investigated by our group, considering

different polymer matrices and conductive nanofillers.23–27 It was widely demonstrated

how above a critical filler concentration (i.e. percolation threshold) a conductive path

within the polymer matrix, constituted by uninterrupted clusters of connected filler par-

ticles, can be constituted.28–30 These materials could find wide application where charge

dissipation and elevated electrical conductivity is required, for example, in the production

of packaging films or sensitive electronic components, or materials subjected to corona

treatments. One of the most critical technical issues is represented by the control of the

filler dispersion quality, and an inhomogeneous dispersion in nanofilled systems could

determine serious technical problems, such as heavy process dependency.31–35

Chemically speaking, poly(butylene terephthalate) (PBT) is a thermoplastic

polyester obtained by polycondensation of 1,4-butanediol with either terephthalic acid

or dimethyl terephthalate.36 PBT was brought to market by Celanese in the late 1960s,

and in 1970 fiber-reinforced PBT compounds were produced. Thanks to its easy

processability and fast crystallization, PBT is a widely used thermoplastic polymer,

and several injection moldable PBT grades are nowadays available on the market.

Moreover, different mineral-filled, glass fiber–reinforced, impact-modified, and

flame-retardant PBT grades, as well as several PBT-based blends are commercialized.

PBT-based compounds are characterized by high strength and stiffness, low moisture

absorption, excellent electrical properties and chemical resistance, and easy and fast

moldability. PBT injection molded components are characterized by smooth surfaces

that can be painted, printed, and ultrasonically welded. Because of its peculiar prop-

erties, PBT can be used in many products: appliances, automobiles, electrical and

electronic parts, and industrial components. Because of its resistance to heat and
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chemicals and the wide range of coloring possibilities, PBT is used for bobbins,

connectors, switches, relays, terminal boards, motor brush holders, TV tuners, fuse

cases, integrated circuit carriers, and sockets and end bells.

In addition to the production of injection molded parts, PBT can also be extruded as

sheets, films, profiles, or as nonwoven fabrics. Nonwoven PBT polymer fabrics can be

extensively used in air and liquid filters for the automotive field and industrial equip-

ment.37 Because of their high porosity, large surface area, dust free, low cost, easy

processability and modifiability, these fabrics can also be applied for hygiene, family,

and medical use. From a structural point of view, nonwovens are composed by a web of

thin fibers, manufactured through different technologies (i.e. wet- or air-laid, spunbond,

or melt-blown).

In the literature, only few works can be found on the effect of the addition of carbon

nanotubes (CNTs) on the physical properties of PBT.38–46 For instance, the influence of

different carbon-based nanofillers (i.e. expanded graphite, CB, thermally reduced gra-

phene oxide, and multi-walled CNTs (MWCNTs)) on the thermal, dielectric, electrical,

and rheological properties of PBT was recently investigated by Yin et al.46 It was

demonstrated how carbon particles act as nucleation agents and significantly improved

the main thermal properties of the material, and how CNT reaches the electrical per-

colation threshold at very low concentration (i.e. <0.5 wt%).

In some studies, innovative technological processes were utilized to prepare

PBT/CNT nanocomposites. As an example, in the study by Saligheh et al., composite

nanofibers of PBT/MWCNTs were prepared by electrospinning technique in the form of

a web of random fibers. The effect of MWCNTs on the morphology, crystallinity, and

mechanical properties of the resulting materials was investigated. The diameter, the

crystallization temperature, and the mechanical properties of the prepared fibers were

significantly affected by the incorporation of MWCNTs.43 In the recent study by Gna-

nasekaran et al., fused deposition modeling was applied to print PBT/CNT nano-

composite materials having multifunctional properties.39

In a previous study by Dorigato et al., electrically conductive polymeric nano-

composites based on PBT filled with commercial CB and CNTs at different relative

ratios have been developed.47 It was demonstrated how the most interesting results were

obtained for nanocomposites with a total filler content of 6 wt% and a CNT/CB relative

amount equal to 2:1. The synergistic effect obtained with the combination of both

nanofillers allowed a rapid surface heating through Joule effect even at applied voltages

of 2 V. Moreover, in the recent study by Paiva et al., a solvent-free, one-pot functio-

nalization of MWCNTs based on the 1,3-dipolar cycloaddition (DCA) of azomethine

ylides using N-benzyloxycarbonyl glycine and formaldehyde was presented.48 It was

demonstrated how this simple, solvent-free chemical procedure could yield CNTs with

fine-tuned surface functionality. A detailed description of this CNT functionalization

was neglected here for the sake of brevity.

On the basis of these considerations, the objective of the present article is the

development and the thermoelectrical characterization of PBT-based nanocomposites

prepared through melt compounding, filled with CNTs at different amounts. A peculiar

aspect of this work is the systematic investigation of the role played both by the CNT
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surface functionalization and by the processing parameters on the physical properties

of the resulting composites, in view of their future application in nonwoven fabrics. In

fact, this research was carried out in collaboration with UFI Innovation Center Srl, a

leading producer of solutions for fluid filtration in the automotive field (cars, motor-

bikes, etc.).

Even if the processing route adopted in this work is considerably different from the

spinning utilized in nonwoven filters, the systematic investigation of the thermo-

mechanical and electrical properties of PBT-based nanocomposites represents a pre-

liminary (and necessary) experimental activity. In fact, this processing route provides a

rapid manner to test the potential of the investigated materials to reach high electrical

conductivity values and to be heated through Joule effect. The performed activity is

therefore propaedeutic to the development of melt-blown filters.

Experimental part

Materials

Polymer pellets of PBT Lanxess Pocan B 1100 (density of 1300 g cm�3 and melt

volume-flow rate at 250�C and 2.16 kg of 80 cm3/10 min), provided by UFI Innovation

Center Srl (UFI Filters Spa, Nogarole Rocca (VR), Italy), were utilized. NC7000

MWCNTs, synthesized by a catalytic carbon vapor deposition process, acquired from

Nanocyl S.A. (Belgium), were considered as nanofiller. According to the supplier

datasheet, their average length and diameter were 1.5 mm and 9.5 nm, respectively

(aspect ratio 158).

Samples preparation

The surface functionalization of CNTs was carried out using the 1,3-DCA reaction of an

azomethine ylide. In this solvent-free process, under the reaction conditions selected

(reaction temperature of 250�C for 5 h), the chemical groups bonded to the CNT surface

are mainly pyrrolidine. This mildly reactive amine is expected to bond with the ester

groups in the polymer, as well as its end groups, under melt mixing conditions.49 A

detailed description of this functionalization procedure can be found elsewhere.48

PBT composites were prepared by melt mixing using a prototype corotating inter-

meshing mini twin-screw extruder with a screw diameter of 13 mm and length to

diameter ratio of 27. The circular die channel presented a diameter of 3 mm. The

temperature profile of the four heating zones along the length from hopper to die was set

to 190�C, 235�C, 235�C, and 230�C. Two screw profiles were tested, formed by a dif-

ferent number and length of kneading zones, separated by conveying elements (as

represented in Figure 1), in order to study the effect of mixing intensity upon the dis-

persion of the nanofillers in the PBT matrix. The various compositions were premixed in

powder form and then compounded using a feed rate of 80 g h�1 and screw rotation

speed of 80 rpm. Under these conditions, the average shear rates generated are within the

range of those typically generated by larger machines. The extruded composites were

cooled and pelletized. Moreover, the screw barrel is equipped with sample collecting
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devices along its length, allowing the collection of composite samples during steady-

state extrusion operation conditions.50 Samples were collected at locations P1 and P2

(Figure 1), the latter corresponding to the extrudate. The samples collected were

immediately quenched in liquid nitrogen for subsequent characterization.

Compounded pellets were dried in a Moretto X Dry Air machine at 120�C for 24

h, and then compression molded at 250�C for 7 min under a pressure of 0.33 MPa,

using a Carver Laboratory Press. In this way, square sheets (16 � 16 cm) with a

thickness in the range from 1.0 mm to 1.2 mm were obtained. CNT-based nano-

composites with a filler content between 0.5 wt% and 3 wt% were prepared. In order

to evaluate the effect of the surface functionalization and of the processing condi-

tions on the physical properties of the resulting materials, nanocomposite samples

with functionalized CNTs and/or processed with the screw configuration 2, with a

Figure 1. Schematic representation of the screw configurations used on the prototype corotating
twin-screw extruder with indication of the sampling locations and heating zones.

Table 1. List of the prepared samples.

Sample CNT content (wt%) Screw configuration Nanofiller

PBT 0 1 —
PBT-CNT-0.5 0.5 1 CNT
PBT-CNT-1.5 1.5 CNT
PBT-CNT-3 3 CNT
PBT-CNT-3F 3 Functionalized CNT
*PBT-CNT-3 3 2 CNT
*PBT-CNT-3F 3 Functionalized CNT

PBT: poly(butylene terephthalate); CNT: carbon nanotube.
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filler amount of 3 wt%, were produced. The list of the prepared samples is reported

in Table 1.

Experimental methodologies

Scanning electron microscopy (SEM) of the as-received and functionalized CNT and of

cryo-fractured composite surfaces sputtered with a combination of gold/palladium was

performed on a NanoSEM FEI Nova 200 (FEI Company, Hilsboro, USA) . Optical

microscopy of the composites cross sections was performed using a BH2 Olympus

transmission optical microscope (Olympus Corporation, Tokyo, Japan) , for the analysis

of the CNT dispersion in polylactic acid (PLA) . Thin composite sections with 5 mm

thickness were cut directly from the extruded pellets using a Leitz 1401 microtome. At

least five cuts were prepared for each composite, resulting in the observation of an

average area of 6 � 105 mm2 per sample. The images were acquired with a digital

camera, LEICA DFC280 (Leica, Wetzlar, Germany) , coupled to the microscope. The

Leica Qwin Pro software (Leica, Wetzlar, Germany) was used to measure the size and

number of the CNT agglomerates, providing the agglomerate area distribution for each

composite type, and the agglomerate area ratio, defined as the sum of all the agglomerate

areas divided by the total composite area analyzed.

Melt flow index (MFI) measurements were carried out using a Dynisco melt indexer,

model LMI 4000 Series (Dynisco LLC, Heilbronn, Germany) , according to ASTM

D1238 standard, in order to evaluate the processability of the nanocomposites. For all the

compositions, MFI was determined at a temperature of 250�C and under an applied

weight of 5.0 kg.

Thermogravimetric analysis (TGA) was performed with a Mettler TG50 device (Mettler

Toledo, Columbus, USA) in a temperature range of 30 to 700�C, at a heating rate of 10�C
min�1. Specimens were tested in air atmosphere at a flow rate of 100 mL min�1. In this way,

it was possible to evaluate the temperature associated to a mass loss of 5% (T5%), of 10%
(T10%), the decomposition temperature Td (corresponding to the temperature associated to

the maximum mass loss rate) and the mass residue at 700�C (Wtr). TGA under inert

atmosphere was carried out on a modulated TGA Q500 from TA Instruments, heating the

samples from room temperature to 700�C at 10�C min�1 under a constant nitrogen flow of

60 mL min�1, and the weight loss was measured at 700�C to estimate the effective CNT

content in each composite produced (WtCNT). Differential scanning calorimetry (DSC)

measurements were carried out using a Mettler DSC30 calorimeter, performing three

thermal ramps at 10�C�min�1: a first heating from 0�C to 270�C, a cooling step from 270�C
to 0�C, and a second heating from 0�C to 270�C. All the tests were carried out under a

nitrogen flow of 100 mL min�1. In this way, the glass transition temperature (Tg), the

melting temperature (Tm), and the crystallization temperature (Tc) were determined.

Moreover, the crystallinity content (Xc), obtained dividing the specific heat of fusion of the

samples by the melting enthalpy of fully crystalline PBT, equal to 140 J g�1, was deter-

mined.51 The weight fraction of PBT in the composites was also taken into account.

Quasi-static tensile tests were performed with an Instron 4502 machine (Instron, Nor-

wood, USA) , in order to determine the most important mechanical properties like elastic
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modulus (E), stress at break (σb), and strain at break (εb). Tests for determination of the

elastic modulus were performed using a load cell of 1 kN and a crosshead speed of 0.25 mm

min�1. An electrical extensometer with a gauge length of 12.5 mm was adopted. The

experimental tests for determination of tensile properties at break were conducted using the

same load cell but at a crosshead speed of 10 mm min�1, without extensometer.

Electrical volume resistivity measurements of the PBT composites under direct

current were carried out at room temperature with a Keithley 6517A electrometer

(Keithley, Cleveland, USA) . Tests were performed at applied voltages of 2, 5, 10, 12,

20, 24, and 30 V, following the ASTM D-4496-04 standard. A four contact point con-

figuration was adopted, with a distance of 3 mm between the measuring electrodes.

Rectangular specimens (15� 5 mm), with a thickness of about 0.6 mm, were tested. The

resistivity (ρ) of the samples was determined through the following equation

ρ ¼ R � A

L
ð1Þ

where R is the electrical resistance, A is the is the cross-sectional area of the specimens,

and L is the distance between the measuring electrodes. The evolution of the surface

temperature upon voltage applications was measured using a Fluke TiRx thermographic

camera (Fluke, Everett, USA) , with the testing samples having a length of 35 mm and a

width of 5 mm. The surface temperature was recorded after 5, 10, 30, 60, and 120 s

starting from room temperature (T0 ¼ 25�C), under applied voltages of 12 and 24 V (i.e.

the voltage levels available in the batteries of cars and trucks).

Results and discussion

It has been widely demonstrated that the macroscopic properties of nanofilled polymer

composites are noticeably affected by the dispersion level of the nanofiller within the

matrix. Therefore, the CNT agglomerates dispersion and morphology within PBT was

analyzed at the micron scale using optical microscopy, and the dispersion and interface

of individual CNT was analyzed by SEM.

The micrographs of the composites collected at positions P1 and P2, presented in Figure

2, illustrate the mixing effect along the screw length. A large number of CNT agglomerates

is observed at P1, which is significantly reduced in P2 (composite at the die exit), demon-

strating the efficiency of the dispersion process. The statistical analysis of the CNT

agglomerate areas (Aagg) observed by optical microscopy provided relevant information for

the characterization of the CNT dispersion state. In effect, the smaller the Aagg and the lower

the number of agglomerates per unit composite area, the higher the dispersion state reached,

meaning that a larger fraction of the CNT added was individually dispersed in the polymer.

The agglomerate area ratio, AR, measured as the ratio of the sum of the areas of all the

agglomerates divided by the total composite area analyzed, may be used as an indicator of

the dispersion level achieved. In fact, the larger the AR the coarser the CNT dispersion is,

meaning that a larger fraction of the CNT remains in agglomerated form. The analysis of the

results presented in Table 2 shows that all the samples collected at P1 presented a coarser

morphology, with larger AR compared to the corresponding composites collected at the

Dorigato et al. 9
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extruder die exit. Analysis of the data obtained for the composites collected at P2 shows that

screw configuration 2 leads to better CNT dispersion, and thus to lower AR, as well as lower

agglomerate area and number. This is consistent with the optical micrographs shown in

Figure 2. SEM images depict the CNT dispersed phase, showing a large amount of indi-

vidually dispersed CNT across the composite cross section, and a general good CNT wetting

by the PBT melt irrespective of the CNT surface treatment.

Considering the future application of the investigated materials and the hypothesized

manufacturing process (melt blowing), it is important to evaluate their processability. In

fact, it is well known how the viscosity of polymer matrices may strongly increase upon

the addition of nanofiller, especially at elevated filler loading.47 The measurement of the

MFI provides an indicator of the composite processability, and thus of the possibility to

produce electrically conductive filters that could be heated through Joule effect. The MFI

test results are reported in Figure 3(a) and (b). As expected, as the nanofiller content in

the composite increases, the MFI decreases (see Figure 3(a)). The drop in MFI is not

dramatic up to a CNT content of 1.5 wt%, while it is strongly reduced for PBT-CNT-3

composite, decreasing nearly 60% compared to neat PBT. The incorporation of further

nanofiller amounts is therefore technologically limited by the matrix viscosity. In fact, in

order to preserve an acceptable processability level, a minimum MFI value of 20 g/10

min at a temperature of 250�C with an applied weight of 5.0 kg is indicated by the UFI

Innovation Center Srl. Therefore, from the point of view of composite viscosity, it can be

considered that all the prepared composites are potentially processable by melt blowing.

In Figure 3(b), the MFI results of nanocomposite materials with 3 wt% of CNT are

compared. It is evident that the composites prepared with functionalized CNTs show

slightly higher MFI values compared to the corresponding composites with non-

functionalized CNTs, irrespective of the adopted screw configuration. Functionaliza-

tion of CNTs was observed to decrease the melt viscosity of the resulting composites52

which may improve their processability. Also, a review by Cassagnau on the rheological

Table 2. Characterization of the non-dispersed CNT fraction in PBT composites with 3 wt% of
as-received or functionalized CNT, collected at two different positions along the extruder screw,
for composites produced using two different screw configurations.

Collection
point

Screw
configuration Sample

Average agglomerate
area (μm2)

Area
ratio

Number of agglom-
erates/mm2

P1 1 PBT-CNT-3 83.1 + 0.2 4.4 1179
PBT-CNT-3F 106.0 + 0.7 6.5 1267

2 *PBT-CNT-3 66.6 + 0.2 6.2 2052
*PBT-CNT-3F 95.0 + 0.2 9.3 2156

P2 1 PBT-CNT-3 69.2 + 0.4 3.4 1091
PBT-CNT-3F 80.0 + 0.6 3.7 909

2 *PBT-CNT-3 38.1 + 0.4 1.2 681
*PBT-CNT-3F 70.4 + 0.8 2.0 610

PBT: poly(butylene terephthalate); CNT: carbon nanotube.
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behavior of organoclay and fumed silica nanocomposites pointed out that the organic

surface functionalization of the nanofillers leads to a decrease in the viscosity of the

corresponding composites due to the breakdown in the particle interactions and the steric

repulsion between functionalized nanofillers.53 Conversely, the choice of the screw

configuration did not strongly affect the viscosity of the prepared composites.

Considering the perspective application of these composites as melt-blown fibers for

fabrics, the investigation of the influence of carbon-based nanofillers on the thermal

properties of the resulting materials is important. Therefore, TGA tests were carried out

on the prepared composites. In Figure 4, representative thermogravimetric curves of

PBT nanocomposites with untreated CNTs at different concentrations are reported,

Figure 3. MFI values of neat PBT and relative nanocomposites: (a) effect of the CNT content and
(b) effect of the CNT functionalization and of the screw configuration. MFI: melt flow index; PBT:
poly(butylene terephthalate); CNT: carbon nanotube.
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while in Table 3, the most important results are summarized. It is interesting to note how

the addition of CNTs, even at low amounts, produces a noticeable increase in the thermal

stability of the material, with an increase of T5%, T10%, and Td parameters. For instance,

with an addition of only 0.5 wt% of CNT, it is possible to increase the T5% and the Td

values by about 12�C with respect to the neat PBT. According to the general theories on

the flame resistance of polymer nanocomposites, the stabilization phenomena observed

for these materials could be explained in terms of their ablative behavior.54 In fact,

during the thermal degradation of the specimen, CNTs may agglomerate on the surface

of the molten polymer, thus creating a physical barrier that protects the rest of the

polymer and hinders the volatilization of the oligomers generated during the combustion

process. The ability to form this protective layer will depend on the capability of

Figure 4. Thermogravimetric curves of neat PBT and relative nanocomposites (air atmosphere).
PBT: poly(butylene terephthalate).

Table 3. Results of TGA analysis of neat PBT and nanocomposites (air atmosphere), and effective
CNT content calculated from TGA results obtained under nitrogen atmosphere.

Sample

Air atmosphere
N2 atmosphere

T5% (�C) T10% (�C) Td (�C) Wtr (%) WtCNT (%)

PBT 372.3 381.1 399.7 0.4 —
PBT-CNT-0.5 384.6 393.3 410.5 0.2 0.4
PBT-CNT-1.5 383.6 392.4 410.6 0.0 1.4
PBT-CNT-3 382.3 391.7 410.6 0.1 2.9
PBT-CNT-3F 380.1 390.1 409.8 0.1 2.6
*PBT-CNT-3 375.2 385.5 404.5 0.3 3.2
*PBT-CNT-3F 372.6 383.5 404.8 0.2 2.9

TGA: Thermogravimetric analysis; PBT: poly(butylene terephthalate); CNT: carbon nanotube.

Dorigato et al. 13



nanofiller to form a continuous barrier. According to FESEM images reported in Figure

2, the fine individual dispersion of CNTs observed at all the considered concentrations

allows the creation of an efficient barrier even at low filler amounts. It is also interesting

to note how the functionalization of CNTs leads to a slight decrease in the thermal

stability with respect to the composites with untreated CNTs at the same filler amount.

As already reported by Garcia et al. and Leszczynska et al.,55,56 this drop can be

explained by the addition of less thermally stable organic moieties bonded to the CNT

surface through functionalization. Furthermore, the change in the screw configuration

determines a slight lowering in the thermal stability of the composite. It can be supposed

that an increase in the thermomechanical stress to which the composite is subjected

during the extrusion process leads to a slight thermal degradation of the compounds, with

a consequent decrease in the molecular weight and thermal resistance. However, this

hypothesis should be verified in the future with further analysis. As it could be expected,

the residue left after TGA of all the samples in air is nearly zero, as both the organic

components and the carbonaceous nanofiller decompose into gaseous products. TGA

was also performed under inert atmosphere for the measurement of the real CNT content

Figure 5. DSC thermograms of neat PBT and relative nanocomposites: (a) first heating stage,
(b) cooling stage, and (c) second heating stage. DSC: differential scanning calorimetry; PBT:
poly(butylene terephthalate).
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of each composite. The CNT content was calculated accounting for the weight losses of

neat PBT, neat CNT, functionalized CNT and their composites at 600�C, and the results

are listed in Table 2. It could be noticed that the real CNT concentration in the prepared

samples is near the theoretical one.

DSC tests were carried out in order to evaluate the effect of the addition of CNT on the

thermal properties of the resulting composites. In Figure 5(a) to (c), representative DSC

thermograms of nanocomposites with different CNT concentrations are reported, while the

most important results are summarized in Table 4. It is clear that the melting temperature

(Tm) of the material is not affected by the presence of nanofillers nor during the first neither

in the second scan. Also the glass transition temperature (Tg) is not substantially influenced

by the addition of nanofiller, and only a slight decrease in Tg (about 4�C) can be detected

for a CNT loading of 3 wt%. As already reported in our previous study on PBT/CNT

nanocomposites, the addition of CNT increases the crystallinity degree (from 41% of the

neat PBT to 44% of the PBT-CNT-3 sample), irrespective of the presence of the surface

functionalization and of the screw configuration. It could be therefore hypothesized that

CNT acts as a nucleating agent on the polymeric matrix.57 It is important to remind that

Table 4. Results of DSC analysis of neat PBT and relative nanocomposites.

Sample Tg (�C) Tm1 (�C) Xc (%) Tc (�C) Tm2 (�C)

PBT 49.6 225.6 40.9 201.5 224.9
PBT-CNT-0.5 49.3 225.8 43.5 207.2 224.9
PBT-CNT-1 48.8 225.0 43.6 209.1 224.8
PBT-CNT-3 43.3 225.2 43.7 210.9 225.1
PBT-CNT-3F 46.7 227.1 45.8 213.7 224.8
*PBT-CNT-3 44.5 225.4 44.4 210.7 224.9
*PBT-CNT-3F 44.0 224.7 43.8 210.2 224.8

DSC: differential scanning calorimetry; PBT: poly(butylene terephthalate); CNT: carbon nanotube; Tg: glass

transition temperature (first heating stage); Tm1: melting temperature (first heating stage); Xc: crystallinity

degree (first heating stage); Tc: crystallization temperature (cooling stage); Tm2: melting temperature (second

heating stage).

Table 5. Results of quasi-static tensile tests on neat PBT and relative nanocomposites.

Sample E (GPa) σb (MPa) Eb (%)

PBT 2.38 + 0.08 40.1 + 5.4 1.5 + 0.2
PBT-CNT-0.5 2.29 + 0.07 31.9 + 5.3 1.2 + 0.2
PBT-CNT-1 2.21 + 0.15 22.7 + 4.3 0.8 + 0.1
PBT-CNT-3 2.58 + 0.10 18.7 + 3.2 0.6 + 0.1
PBT-CNT-3F 3.03 + 0.05 26.6 + 3.2 0.9 + 0.1
*PBT-CNT-3 2.04 + 0.32 13.9 + 3.9 0.5 + 0.1
*PBT-CNT-3F 2.46 + 0.08 13.5 + 5.1 0.5 + 0.1

PBT: poly(butylene terephthalate); CNT: carbon nanotube.
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one of the key parameters for the processing conditions of these materials is the crystal-

lization temperature (Tc), because it determines the die-to-collector distance in the melt-

blown technology. The results reported in Table 4 highlight that CNTs act as nucleating

agents, with an increase of Tc with the CNT loading (up to 10�C with a CNT loading of 3

wt%). Even in this case, Tc values do not seem to be strongly influenced by CNT func-

tionalization and/or by the screw configuration in the extrusion process.

The evaluation of the mechanical behavior of the tested materials plays a key role in

the definition of their technological properties and, for the present application, in view of

their future use as filters in the automotive field. In Table 5, the results of quasi-static

Figure 6. (a) Electrical bulk resistivity of PBT/CNT nanocomposites (applied voltage of 12 V) and
(b) dependency of the electrical resistivity of PBT/CNT nanocomposites from the applied voltage.
PBT: poly(butylene terephthalate); CNT: carbon nanotube.
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tests performed on the prepared nanocomposites are summarized. Considering the

standard deviation values associated to these measurements, it can be concluded that the

stiffness of the composites is not substantially affected by the addition of nanofiller until

a CNT content of 1.5 wt%, and only for the nanocomposite filled at 3 wt% a slight

increase of the elastic modulus (less than 10%) can be detected. The surface functio-

nalization tends to further improve the stiffness of the material, probably because of the

improved CNT/PBT interface, while a change in screw configuration in the extrusion

process tends to decrease the elastic modulus. Comparing these results with those from

MFI tests (see Figure 3(b)), it could be hypothesized that the harsher conditions applied

to the composite melt under screw configuration 2 could promote its partial thermal

degradation, with a consequent reduction in the elastic and rheological properties of the

resulting materials. As it often happens with nanofilled systems, an increase in the

nanofiller concentration leads to an evident embrittlement of the samples, with a con-

sequent decrease of the stress at break (σb) and of the strain at break values (εb). The

presence of the surface functionalization, with the improvement of the CNT/PBT

interface, seems to promote a partial retention of the failure properties of the pristine

polymer (at least in screw configuration 1), while a change in screw configuration

probably promotes the thermal degradation of the matrix, with a reduction of the σb and

εb values.

Four point probe electrical measurements were carried out, and the results of

volume resistivity measurements on the samples containing untreated CNTs at an

applied voltage of 12 V are reported in Figure 6(a). The introduction of the carbon-

based nanofiller in the insulating polymeric matrix increases the conductivity of the

nanocomposites. As an example, a resistivity value lower than 102 O�cm can be

achieved with a CNT content of 3%wt. The percolation threshold for the prepared

composites is very low (less than 0.5 wt%). In the previous study of Dorigato et al. on

PBT nanocomposites,47 a resistivity of 103 O�cm was reached with a CNT content of

6 wt%. It may be therefore concluded that the twin-screw melt mixing technique led

to a better nanofiller dispersion within the matrix, with a consequent increase in

conductivity. Based on the information obtained by UFI Innovation Center Srl, a

target volume resistivity value lower than 103 O�cm at an applied voltage of 12 V is

required to prepare nanocomposites that could be effectively heated through Joule

Table 6. Electrical resistivity values of PBT-based nanocomposites with a nanofiller content of 3
wt% (applied voltage 12 V).

Sample Resistivity (O�cm)

PBT-CNT-3 3.5 � 101

PBT-CNT-3F 5.4 � 103

*PBT-CNT-3 2.6 � 101

*PBT-CNT-3F 4.6 � 102

PBT: poly(butylene terephthalate); CNT: carbon nanotube.
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effect. For this reason, CNT-filled nanocomposites with a filler amount higher than

1.5 wt% could be potentially applied for the required application. Moreover, from

Figure 6(b), it can be concluded that the nanofilled samples with CNT content higher

than 1.5 wt% present an Ohmic behavior, being the electrical resistivity values

independent from the applied voltage. It is also important to evaluate the effect of

Figure 7. Thermocamera images of surface temperature evolution upon voltage application of
*PBT-CNT-3 sample at an applied voltage of 24 V. PBT: poly(butylene terephthalate); CNT:
carbon nanotube.
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CNT functionalization and of the screw configuration on the electrical properties of

the prepared materials.

In Table 6, electrical resistivity values of PBT-based nanocomposites with a nano-

filler content of 3 wt%, tested at a voltage of 12 V, are summarized. It is interesting to

note how the presence of the surface functionalization determines a substantial decrease

in the electrical conductivity of the samples. It is possible that the presence of the organic

layer around CNTs hinders the electronic conduction within the materials, even if a

percolative network is formed. This hypothesis is also supported by the study by Costa

Figure 8. Surface temperature evolution of PBT-based nanocomposites at an applied voltage of
(a) 12 V and (b) 24 V. PBT: poly(butylene terephthalate) .
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et al., in which the effect of CNT type and functionalization on the electrical, thermal,

mechanical, and electromechanical properties of CNT/styrene–butadiene–styrene

composites was investigated.58 Moreover, processing these materials under more

intensive mixing conditions (i.e. screw configuration 2) leads to a slight improvement of

the electrical conductivity, probably due to better nanofiller dispersion within the matrix

(see FESEM micrographs in Figure 2).

The heating capability of PBT nanocomposites was evaluated through a thermo-

camera. In Figure 7, representative images of the evolution of the surface temperature of

*PBT-CNT-3 composite sample at an applied voltage of 24 V are reported. An effective

Figure 9. Surface temperature evolution of PBT nanocomposites with a CNT content of 3 wt% at
an applied voltage of (a) 12 V and (b) 24 V. PBT: poly(butylene terephthalate); CNT: carbon
nanotube.
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heating is evident even after 10 s, and a temperature of 62�C can be reached after 120 s.

In Figure 8(a) and (b), the measurements of Joule heating of the samples containing

untreated CNTs at 12 V and 24 V are, respectively, reported. The evolution of the surface

temperature with respect to the applied voltage and to the composition of the nano-

composites was measured. It is interesting to see how at 12 V the heating capability of

the tested materials is rather limited, and only with the PBT-CNT-3 composite is pos-

sible to reach a slight heating of the sample (i.e. less than 2�C after 120 V). The heating

ability is improved by running the test at 24 V (see Figure 8(b)). However, even in this

case only the PBT-CNT-3 shows a significant surface temperature increment after 120 s

(about 7�C). The effect of the nanofiller surface treatment and of the processing con-

ditions should also be analyzed. In Figure 9(a) and (b), surface temperature evolution of

PBT nanocomposites with a CNT content of 3 wt% at applied voltages of 12 V and 24 V

are, respectively, reported. From these plots, it can be concluded that the presence of the

surface functionalization, hindering the electrical conductivity properties of the samples,

does not allow the heating of the samples, regardless of the applied voltage. Conversely,

processing with screw configuration 2, with the consequent improvement of the nanofiller

dispersion and thus of the electrical conductivity, leads to the achievement of an interesting

increase in the surface temperature of the materials, especially at elevated voltage. For

instance, with the *PBT-CNT-3 composite, it is possible to reach a temperature increase of

37�C after 180 s at 24 V. It can be therefore concluded that the results of surface heating

measurements are in agreement with the results reported for electrical resistivity tests (see

Figure 6; Table 6). The samples that present the higher conductivity dissipate more thermal

power, and in these conditions the surface heating is more intense. Finally, another inter-

esting aspect observed for the samples with higher conductivity is that during the first

seconds of heating, there is a rapid increase in temperature, and the material reaches a

temperature plateau, due to the fact that the thermal power produced is equal to the dis-

sipated one. This aspect is of key importance for the application of these materials as filters,

because the thermal degradation of the materials for prolonged voltage application times

should be avoided.

Conclusions

Novel electrically conductive nanocomposites based on PBT filled with CNTs at dif-

ferent amounts were investigated. FESEM micrographs demonstrated how a good

nanofiller dispersion was achieved, especially by using surface treated nanotubes and by

processing the composites by twin-screw extrusion. MFI measurements demonstrated

how the processability of the nanocomposites was reduced at elevated filler amounts.

Thermal degradation stability was improved upon the addition of CNT, even at low filler

contents. The addition of CNT promoted an interesting nucleating capability of the PBT

matrix, with an enhancement of the crystallization temperature and the crystallinity

degree. The addition of CNTs determined a stiffening effect at elevated filler amounts,

accompanied by an evident embrittlement of the samples.

The addition of nanofiller above the percolation threshold allowed to considerably

improve the electrical conductivity of the samples. Electrical resistivity values of about
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10 O�cm were obtained for nanocomposites with an untreated CNT amount of 3 wt%.

With this composition, it was possible to obtain a rapid surface heating through Joule

effect at applied voltages of 12 V.
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