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A simple iterative procedure for determination of the statistical parameters of a Weibull
distribution is proposed. All experimental results on specimens of different size are
considered together as a statistically representative population. The procedure can be used
for a population in which each specimen has a unique size. The statistical reliability of the
iterative procedure is illustrated by comparison with a minimization analysis and
confirmation with existing methods. Experimental confirmation of the analysis is developed
using six types of glass and carbon fibres at four gauge lengths each. It is shown that Weibull
parameters, obtained separately for populations of fixed length, vary with the fibre length.

1. Introduction

The use of Weibull statistics [1] to characterize the
failure of brittle materials is well established. More-
over, a probabilistic model utilizing a weakest link
concept allows one to predict the dependence of
strength on material (specimen) size. In accordance
with the classical Weibull size effect, one should expect
that statistical information regarding the strength dis-
tribution at material volume of V,, for example, may
be used directly to calculate the distribution at vol-
ume, V. However, independent experimental results
on different specimen sizes of the same materials often
show significant variability of the distributions and,
especially, shape parameters. This well-known phe-
nomenon brings into question the reliable extrapola-
tion of a Weibull distribution obtained at one volume
to obtain a distribution for a population of different
size. We assume that the statistical analysis of the size
effect is best carried out using a single large popula-
tion of specimens of various sizes. Such an approach
will permit one to obtain the most plausible estima-
tions of Weibull parameters within the domain of
considered sizes and be a clearer indication as to
whether a Weibull distribution will properly charac-
terize the size effect with a single set of statistical
parameters.

The following existing methods for the above-men-
tioned statistical problem may be noted: (a) a method
of average values; (b) a least square method (LSM); (c)
a method of maximum likelihood. Method (a) consists
of two main steps, namely calculation of the average
strengths for each size, followed by a linear approxi-
mation of the dependence of the average strength on
the size. This widely used approach has serious disad-
vantages. Firstly, instead of using all experimental
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points together to calculate the statistical parameters,
only the average characteristics of a limited number of
sizes are considered. (In practice, rarely more than
four different sizes are used for the analysis.) Secondly,
in general, each average strength is calculated from
a different number of measurements and the non-
uniform statistical “weight” of each average value is
neglected. These disadvantages are reflected in low
statistical reliability of the results. While method (b)
takes into account all experimental points, it is as-
sumed that there are large enough populations for
each size [2]. Even populations of five to ten speci-
mens for each size may be too small while using LSM.
In a case when each specimen has a unique size, this
method may provide too rough (and perhaps, incor-
rect) estimations. Experimental analysis of a multi-
step failure is an example of experimental programs in
which each following failure reflects a unique size of
the remaining virgin part of a specimen. Fibre frag-
mentation in a single-fibre composite is a typical ap-
plication of a multi-step experimental programme [3].
Thus, use of the LSM technique can result in an
unreliable estimate of the size effect. Strictly speaking,
method (c) has none of these disadvantages [4]. How-
ever, its application is reduced to a problem of a non-
linear function minimization [5], in which numerical
realization may be accompanied by certain difficulties.

Thus, the purpose of the present work was to devel-
op a simple approach and respective statistical pro-
cedure for predicting Weibull parameters using all
experimental data obtained at various specimen sizes.
Glass and carbon fibres are brittle in nature and their
length may be considered as a characteristic size para-
meter. Consequently, experimental confirmation of
the approach and verification of the suitability of
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a Weibull distribution for describing the size effect has
been carried out on six different sets of the fibres, each
having data for four different gauge lengths.

2. Theory
Let us consider a strength distribution of a brittle
material with volume, V in a classical Weibull form [1]

1 — exp|: — VKGN 1)

where A, B is the scale, shape parameter and V|, is
a reference volume. The volume V' may be represented
as kV, and thus, Equation 1 has a form

ol
- exp[_ <j1>ﬁ] @

s = ck/® (3)

P(o,V) =

P(c,V)

where

is the reduced stress calculated for each considered
volume. The statistical parameters A and B from
Equation 2 may be easily calculated using a tradi-

tional LSM for a plot y;=x;;i =1, ..., n, in a linear
form

y=Bx+a 4)

where
x; = In(s;) (52)
vi=In{In[1/(1 — P)]} (5b)
P, =(i—0.5)/n (5¢)
o= —Bln(A) (5d)

and n is the number of tests. The only complexity is
connected with initial evaluation of s;, because its
calculation requires the use of an unknown value of f.
Therefore, the following iterative approach is proposed.

(a) An initial value of  is introduced. (As we will see
below, the choice of the initial value does not affect the
final result.)

(b) Values of s;,i =1, ... ,n are calculated taking
into account the size (volume) of each specimen.

(c) Parameters A and B’ are calculated using the
LSM in the conventional manner.

(d) If the difference |B — B'| is greater than a reques-
ted accuracy, the iterative process is continued by
returning to the step b at B = f’. Otherwise, the con-
vergence process is assumed to be completed.

TABLE I Description of fibres

3. Experimental procedure

Experimental confirmation of the technique was car-
ried out using tensile strength data from the testing of
the six types of fibres listed in Table I. The fibre
diameters were measured using an optical microscope
(ORTHOLUX II POL-BK by Leitz) and an image
analyser system (MET1 by Pertel) at a magnification
of x400. From observations performed with a scann-
ing electron microscope (Stereoscan 200 by Cam-
bridge), we can say that all the fibres appear to have an
almost circular cross-section.

Tensile strengths were measured at various gauge
lengths on monofilaments randomly extracted from
a bundle of the fibre to be tested. Four different gauge
lengths have been considered for each type of fibre:
Iy =20mm; [, = 15mm; I3 = 10 mm; [, = 5 mm, ex-
cept for: [{ =40 mm; [, =20 mm for fibre ¢ and
[y =25mm; [, =20 mm for fibre e. In accordance
with ASTM standard D3379-75 [6], a single fibre was
centre-line mounted on special slotted thin paper tabs
using a quick-setting glue. The tabs were gripped so
that the test specimen was aligned axially in the jaws
of a constant-speed movable-crosshead test machine.
The paper of the mounting tabs was then cut away.
Tests were conducted at room temperature and at
a constant crosshead speed of 0.2 mm min~' using an
Instron 4502 tensile tester equipped with a 10 N load
cell. All the fibres exhibit brittle failure and a linear
force—deflection response to the point of failure.

Results of statistical treatment for each gauge length
separately are presented in Table II where R is the
average strength and v is the coefficient of variation.
Experimental values of the average strength decrease
with increasing fibre length, indicating a significant
size effect for each type of fibre. Moreover, consider-
able variability, v up to 35%, reflects the evident
stochastic nature of the fibre failure. The Weibull
parameters presented in Table 11 should not be func-
tions of the fibre length (or volume), if Equation 1 is
an appropriate form for the various distributions.
However, values of the scale parameters presented in
Table 1I (reduced to I, = 5 mm: A; = A(l;/1,)""*) and
the shape parameters B vary significantly with fibre
length.

4. Discussion

Results of statistical treatment using the proposed
iterative procedure are shown in Table III at a refer-
ence length of [, = [, = 5 mm. The convergence pro-
cess is fast, and exactness of three digits for [ is
obtained at three to four iterations. Moreover, the

Fibre Manufacturer Trade name Material Surface treatment Diameter
(nm)
a Sisecam - E-glass Bare 148 + 1.3
b Sisecam - E—glass PA compatible 147 +1.1
¢ PPG 2001 E—glass epoxy compatible 251 +04
d Vetrotex P375 E—glass PA compatible 199 +0.9
e Vetrotex P5213 E-glass PP compatible 16.8 + 1.2
f Toho Besfight carbon epoxy compatible 7.0 + 0.1
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TABLE 11 Statistical characteristics of strength depending on fibre length

Fibre

Charact. l a b c d e f
n N 27 23 23 26 17 21

I, 31 22 23 27 17 27

I3 24 23 20 32 22 18

Iy 29 34 18 30 19 16

> 111 102 84 115 75 82
A (MPa) I 2020 2565 4218 2602 2146 3764

I, 1793 2558 2341 2703 3220 3967

I3 1768 2640 2207 2472 3364 3945

Iy 2017 2628 2184 2400 2777 3765
B I 3.18 7.07 2.76 7.94 4.44 572

I, 5.13 7.76 6.47 6.50 3.67 5.80

I3 6.61 6.85 8.14 9.38 3.17 6.00

Iy 4.16 5.52 5.65 8.74 3.44 9.81
R(MPa) B 1168 1968 1730 2058 1363 2734

I, 1331 2088 1760 2125 1989 3041

I3 1485 2230 1911 2178 2409 3259

Iy 1823 2426 2019 2271 2488 3578
A (%) I —17.36 —1.12 14.33 2.62 —22.89 — 475

I, —0.68 0.62 1.08 2.35 10.31 1.54

I3 1.08 1.26 —6.96 —0.13 9.92 2.18

Iy 5.65 —0.37 — 1897 —4.53 —5.87 0.84
v (%) I 354 16.3 31.0 15.1 25.6 20.9

I, 233 14.3 18.0 17.1 30.2 20.6

I3 17.7 17.2 14.6 12.9 327 194

Iy 235 21.5 204 13.6 349 11.8
TABLE 111 Statistical parameters of Weibull distribution at the reference length [, = 5 mm
Fibre n A (MPa) B r

Iterative® LSM* MAV? Iterative® LSM* MAV? Iterative® LSM* MAV?

a 111 1888 1975 2048 4.39 3.82 3.20 0.9968 0.9441 —0.9959
b 102 2606 2631 2619 6.87 6.50 6.74 0.9823 0.9479 —0.9928
¢ 84 2639 2601 2086 4.32 4.46 12.70 0.9818 0.8682 —0.9742
d 115 2518 2513 2360 8.18 8.23 14.60 0.9918 0.9593 —0.9926
e 75 2931 3071 3018 3.54 3.15 3.12 0.9851 0.9268 — 0.8446
f 82 3809 3897 3938 6.47 5.82 5.44 0.9775 0.9444 —0.9732

*“Iterative” are the results calculated by the proposed approach, “LSM” by the least square method, “MAV” by the method of average values.

convergence of 4 is developed even faster. The initial
value of B was arbitrarily chosen as 1, although the
same final values were obtained using an initial value
of B = 100. (We recommend, however, that the initial
value be chosen close to an “expected” one.) Graphical
interpretation of the distributions is presented in
Fig. 1. The linear character of In{ln[1/(1 — P)]} < In(s)
and the magnitudes of the coefficients of correlation, r,
confirm the linearity of these dependencies (Table III).

The approach permits one to solve an indirect prob-
lem, and predicts regularities of the size effect as well.
In other words, the average strength at an arbitrary
length, I, may be calculated as

Ripeor = AT(1 + 1/B) (I/1) 1P (6)
Table II shows the difference

A == _theor (7)

between the predicted value of Ry, using Equation
6 and the value of R from experimental results. One
can note that with the exceptions of fibres ¢ at [, I,
and e at [, the differences are relatively small. There-
fore, the Weibull parameters obtained using the iter-
ative calculation, utilizing data on all fibre lengths,
accounts properly for the effect of fibre length on the
strength.

A mathematical confirmation of the approach may
be attained by comparison with a minimization pro-
cedure. In contrast with the iterative technique, the
following alternative method of solution may be used
as well. Again, we assume that the initial value of B is
known. The LSM for the conventional relation ex-
pressed by Equation 4 may be written as

(vi = Bx; — 0)* > min )

M=

1
O =-
ni=
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Figure I1(a—f) Cumulative probability functions of the reduced fibre strength.
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Solving the problem for o at 0®/0o = 0, one obtains

(Vi — Bxi)2 )

M=

Amin

S =

1

i

Therefore, Equation 8 can be presented as an one-
dimensional convex problem
o = (D[Ba Otmin(B)] — min (10)
which can be solved numerically. For example, the
approach represented by Equations 8-10 results in
values of P =4.385 A =1888.8 MPa for fibre
a (exactness 0.001 of B); while the iterative procedure
produces  =4.389, 4 = 1888.0 MPa, ie. the same
values for the statistical parameters. This example
shows the correctness of the proposed iterative ap-
proach.
Let us further consider a difference between the
proposed iterative approach and the LSM. Evalu-

2
(o]
(o]
(o]
0 4
)
z
L
T
£ o
5 o O
-4
o (o]
(o]
(o]
_6 " I n n " n n I
6.0 7.0 8.0
(a) Ln (MPa)
2
o+

Ln{In[1/(1-P)1}—In{k)
N

-6

+ + 7 + + + + + + +
6.0 7.0 8.0
(c) Ln(MPa)

ations of the parameters including relevant coefficients
of correlation are presented in Table III, while
a graphical representation of the LSM is shown in
Fig. 2 as a plot In{In[1/(1 — P)]} — In(k)=In(o). Al-
though the iterative approach and LSM provide com-
parable results, there are certain inevitable differences
between them (Table II). The differences may be ex-
plained by the approximate nature of the magnitudes
P; calculated using Equation 5 as P; ~ (i — 0.5)/n. Us-
ing the proposed approach, all experimental data are
considered together and n = ) n;, where n; is the num-
ber of points for jth length. Using the LSM, the prob-
abilities P;; ~ (i —0.5)/n; are considered separately for
each length. Because n is always more than n;, one can
assume that the iterative approach provides more
exact evaluations. While an increase in the number of
data points used will reduce the differences, use of
a finite number of the experimental tests will always be
reflected by the differences in the calculated values
using the two methods.

Ln{In[1/(1-P)1}—In{k)
N

(b) Ln (MPa)

Ln{In[1/(1-P)1}-In(k)
N

7.0 7.5 8.0
(d) Ln{(MPa)

Figure 2(a—f) Graphical representation of the fibre strength distribution calculated using the LSM for fibre types a—f, respectively.
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Figure 2 (Continued)

One can note that application of the method of
average values may be associated with serious overes-
timation (Table III). For example, parameters § and
A for fibres ¢ and d calculated using this method are
too far from those evaluated by the iterative approach
or LSM. The lowest statistical reliability of this
method is explained by a small number of analysed
points, which are determined by the number of
different lengths.

5. Conclusion

1. The primary advantage of the proposed iterative
approach allows one to utilize all the experimental
data on the strengths of various specimen sizes to
obtain a single set of statistical parameters which
properly accounts for the size effect on the strength
distribution. Utilization of this larger-sized, more di-
verse population reflects all experimental data, and
therefore, provides a more reliable prediction of the
strength distribution within the domain of considered
sizes.

2. The proposed iterative strategy provides
a simple numerical procedure for calculation of the
statistical parameters using ordinary software of the
LSM. The convergence process is fast and provides
correct results, as confirmed by comparison with a di-
rect minimization procedure.

3. When applied on the experimental data for six
different fibres, each at four lengths, the proposed
statistical treatment results in a single set of statistical
parameters for each fibre. The linear dependence of
the reduced stresses, s shown in Fig. 1, and the coeffi-
cients of correlation approaching unity reported in
Table II1, attest to the suitability of the Weibull func-
tion. Moreover, predictions of average strength at
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different gauge lengths are also close to the experi-
mental results, thus confirming that the converged
solution properly accounts for the size effect in the
range of lengths investigated (Table II). It may be
emphasized that the Weibull parameters obtained for
each length separately, have significant variability,
and therefore, show poor confirmation with the
Weibull size effect. Although the experiment is con-
nected with variability of length only, one can expect
the same effect for any volumetric difference.

4. While it is always risky to extrapolate the results
of a statistical evaluation beyond the size range of the
experimental data, the proposed procedure provides
the opportunity to increase the number of simulta-
neously considered tests, thereby increasing the stat-
istical reliability. Moreover, the approach can be used,
in principle, for a sample in which each specimen has
a unique length (size).
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